Covering Rough Sets and Formal Topology – A Uniform Approach Through Intensional and Extensional Constructors

  • Piero PaglianiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10020)


Approximation operations induced by coverings are reinterpreted through a set of four “constructors” defined by simple logical formulas. The very logical definitions of the constructors make it possible to readily understand the properties of such operators and their meanings.


  1. 1.
    Bartol, W., Miró, J., Pióro, K., Rosselló, F.: On the coverings by tolerance classes. Inf. Sci. 166, 193–211 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bell, J.L.: Orthologic, forcing, and the manifestation of attributes. In: Chong, C.T., Wicks, M.J. (eds.) Southeast Asian Conference on Logic, pp. 13–36. Elsevier Science Publisher, North-Holland (1983)Google Scholar
  3. 3.
    Blyth, T.S., Janowitz, M.F.: Residuation Theory. Pergamon Press, Oxford (1972)zbMATHGoogle Scholar
  4. 4.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intensions in the rough set theory. Inf. Sci. 107, 149–167 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Čech, E.: Topological Spaces. Wiley, Hoboken (1966)zbMATHGoogle Scholar
  6. 6.
    Düntsch, I., Gegida, G.: Modal-style operators in qualitative data analysis. In: Proceedings of the IEEE International Conference on Data Mining, pp. 155–162 (2002)Google Scholar
  7. 7.
    Ghanim, M.H., Mustafa, H.I., Abd El Aziz, S.: On lower and upper intension order relations by different cover concepts. Inf. Sci. 181, 3723–3734 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Greco, S., Matarazzo, B., Słowinski, R.: Algebra and topology for dominance-based rough set approach. In: Ras, Z.W., Tsay, L.-S. (eds.) Advanced in Intelligent Systems. SCI, vol. 265, pp. 43–78. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Huang, A., Zhu, W.: Topological characterizations for three covering approximation operators. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 277–284. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Järvinen, J., Pagliani, P., Radeleczki, S.: Information completeness in nelson algebras of rough sets induced by quasiorders. Stud. Log. 101(5), 1073–1092 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Järvinen, J., Radeleczki, S.: Representation of Nelson algebras by rough sets determined by quasiorders. Algebra Univers. 66, 163–179 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Järvinen, J., Radeleczki, S.: Tolerances induced by irredundant coverings. Fundamenta Informaticae 137, 341–353 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussegenkalkül. Archiv für mathematische Logik und Grundlagenferschung 3, 74–78 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kumar, A., Banerjee, M.: Definable and rough sets in covering-based approximation spaces. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 488–495. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Langeron, C., Bonnevay, S.: Une approach pretopologique pour la structuration. Document de Recherche \(N^o\) 1999 - 7. Centre de reserches economiques de l’Université de Saint EtienneGoogle Scholar
  17. 17.
    Li, Q., Zhu, W.: Lattice structures of fixed points of the lower approximations of two types of covering-based rough sets.
  18. 18.
    Nagarajan, E.K.R., Umadevi, D.: A method of representing rough sets system determined by quasi orders. Order 30(1), 313–337 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pagliani, P.: Concrete neighbourhood systems and formal pretopological spaces (draft). In: Presented at the Calcutta Logical Circle Conference on Logic and Artificial Intelligence, Calcutta, 13–16 October 2003Google Scholar
  21. 21.
    Pagliani, P.: Pretopology and dynamic spaces. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS, vol. 2639, pp. 146–155. Springer, Heidelberg (2003). Extended Version in Fundamenta 59(2–3), 221–239 (2004)CrossRefGoogle Scholar
  22. 22.
    Pagliani, P.: The relational construction of conceptual patterns - tools, implementation and theory. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 14–27. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Pagliani, P., Chakraborty, M.K.: Information Quanta and approximation spaces. I: Non-classical approximation operators. In: Proceedings of the IEEE International Conference on Granular Computing, Beijing, China, 25–27 July 2005, vol. 2, pp. 605–610. IEEE, Los Alamitos, July 2005Google Scholar
  24. 24.
    Pagliani, P., Chakraborty, M.K.: Formal topology and information systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 253–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Pagliani, P., Chakraborty, M.K.: A Geometry of Approximation. Trends in Logic, 27th edn. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Qin, K., Gao, Y., Pei, Z.: On covering rough sets. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 34–41. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Restrepo, M., Cornelis, C., Gmez, J.: Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. Int. J. Approximate Reasoning 55(1), 469–485 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sambin, G.: Intuitionistic formal spaces - a first communication. In: Skordev, D. (ed.) Mathematical Logic and Its Applications, pp. 187–204. Plenum Press, New York (1987)CrossRefGoogle Scholar
  29. 29.
    Sambin, G., Gebellato, S.: A preview of the basic picture: a new perspective on formal topology. In: Altenkirch, T., Reus, B., Naraschewski, W. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 194–208. Springer, Heidelberg (1999). doi: 10.1007/3-540-48167-2_14 CrossRefGoogle Scholar
  30. 30.
    Thuan, N.D.: Covering rough sets from a topological point of view. Int. J. Comput. Theor. Eng. 1(5), 606–609 (2009)CrossRefGoogle Scholar
  31. 31.
    Vickers, S.: Topology via Logic. Cambridge Tracts in Theoretical Computer Science, vol. 5. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  32. 32.
    Yao, Y.Y., Chen, Y.H.: Rough set approximations in formal concept analysis. In: Dick, S., Kurgan, L., Pedrycz, W., Reformat, M. (eds.) Proceedins of 2004 Annual Meeting of the North American Fuzzy Information Processing Society, (NAFIPS 2004). IEEE Catalog Number: 04TH8736, pp. 73–78 (2004)Google Scholar
  33. 33.
    Yao, Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zakowski, W.: Approximations in the space \((U,\Pi )\). Demonstratio Mathematica 16, 761–769 (1983)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.RomeItaly

Personalised recommendations