Skip to main content

Applications of In Vivo and In Vitro Solid-Phase Microextraction Techniques in Plant Analysis

  • Chapter
  • First Online:
Solid Phase Microextraction
  • 1280 Accesses

Abstract

Plant tissues usually consist of various complex matrices. Therefore, there is a clear and unmet need for the development of suitable systems for the collection and analysis of targeted analytes in plant, particularly for the sample pretreatment methods. Solid-phase microextraction (SPME) combines sampling, isolation, concentration, and enrichment in one step and is a simple and effective sample preparation technique. Due to the high-efficiency, cost-saving, solvent-free, and easy-to-realize automation properties, SPME is among the more promising and new, green sample preparation techniques for the determination of traces of different compounds of plants in the last decade, such as volatile organic compounds (VOCs) emitted from different organs of plants and a variety of environmental contaminants in plants. In this chapter, we summarize the recent applications of in vitro and in vivo SPME in different organs of plant and also discuss the advantages of the state-of-the-art SPME technology applied in the fields of plant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiestl FP (2015) Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 206:571–577

    Article  Google Scholar 

  2. Oikawa PY, Lerdau MT (2013) Catabolism of volatile organic compounds influences plant survival. Trends Plant Sci 18:695–703

    Article  CAS  Google Scholar 

  3. Bicchi C (2004) Special issue: analysis of flavors and fragrances. J Chromatogr Sci 42:401–401

    Article  Google Scholar 

  4. Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    Article  CAS  Google Scholar 

  5. Huang M, Sanchez-Moreiras AM, Abel C et al (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  Google Scholar 

  6. D’Alessandro M, Erb M, Ton J et al (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell Environ 37:813–826

    Article  CAS  Google Scholar 

  7. Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  CAS  Google Scholar 

  8. Yan HJ, Zhang H, Wang QG et al (2011) Isolation and identification of a putative scent-related gene RhMYB1 from rose. Mol Biol Rep 38:4475–4482

    Article  CAS  Google Scholar 

  9. Petronilho S, Maraschin M, Delgadillo I et al (2011) Sesquiterpenic composition of the inflorescences of Brazilian chamomile (Matricaria recutita L.): impact of the agricultural practices. Ind Crops Prod 34:1482–1490

    Article  CAS  Google Scholar 

  10. Kaewtathip T, Charoenrein S (2012) Changes in volatile aroma compounds of pineapple (Ananas comosus) during freezing and thawing. Int J Food Sci Technol 47:985–990

    Article  CAS  Google Scholar 

  11. Wenzl T, Simon R, Kleiner J et al (2006) Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. Trends Anal Chem 25:716–725

    Article  CAS  Google Scholar 

  12. Lei FF, Huang JY, Zhang XN et al (2011) Determination of polycyclic aromatic hydrocarbons in vegetables by headspace SPME-GC. Chromatographia 74:99–107

    Article  CAS  Google Scholar 

  13. Sarafraz-Yazdi A, Ghaemi F, Amiri A (2012) Comparative study of the sol-gel based solid phase microextraction fibers in extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron samples extractants. Microchim Acta 176:317–325

    Article  CAS  Google Scholar 

  14. Melo A, Aguiar A, Mansilha C et al (2012) Optimisation of a solid-phase microextraction/HPLC/diode array method for multiple pesticide screening in lettuce. Food Chem 130:1090–1097

    Article  CAS  Google Scholar 

  15. Macherius A, Eggen T, Lorenz WG et al (2012) Uptake of galaxolide, tonalide, and triclosan by carrot, barley, and meadow fescue plants. J Agric Food Chem 60:7785–7791

    Article  CAS  Google Scholar 

  16. Herklotz PA, Gurung P, Vandenheuvel B et al (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78:1416–1421

    Article  CAS  Google Scholar 

  17. Wu X, Conkle JL, Ernst F et al (2014) Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ Sci Technol 48:11286–11293

    Article  CAS  Google Scholar 

  18. Materic D, Bruhn D, Turner C et al (2015) Methods in plant foliar volatile organic compounds research. Appl Plant Sci 3:1500044

    Article  Google Scholar 

  19. Zhu F, Xu J, Ke Y et al (2013) Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: a review. Anal Chim Acta 794:1–14

    Article  CAS  Google Scholar 

  20. Zhou SN, Ouyang GF, Pawliszyn J et al (2008) Comparison of microdialysis with solid-phase microextraction for in vitro and in vivo studies. J Chromatogr A 1196:46–56

    Article  CAS  Google Scholar 

  21. Bicchi C, Cordero C, Liberto E et al (2008) Headspace sampling of the volatile fraction of vegetable matrices. J Chromatogr A 1184:220–233

    Article  CAS  Google Scholar 

  22. Stashenko EE, Martinez JR (2008) Sampling flower scent for chromatographic analysis. J Sep Sci 31:2022–2031

    Article  CAS  Google Scholar 

  23. Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase microextraction, a for preparation. Anal Chem 66:844A–853A

    Article  CAS  Google Scholar 

  24. Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111:2784–2814

    Article  CAS  Google Scholar 

  25. Souza-Silva EA, Jiang R, Rodriguez-Lafuente A et al (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Anal Chem 71:224–235

    Article  CAS  Google Scholar 

  26. Xu C, Chen G, Xiong Z et al (2016) Applications of solid-phase microextraction in food analysis. Trends Anal Chem 80:12–29

    Article  CAS  Google Scholar 

  27. Souza-Silva EA, Reyes-Garces N, Gomez-Rios GA et al (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Anal Chem 71:249–264

    Article  CAS  Google Scholar 

  28. Kimbaris AC, Siatis NG, Daferera DJ et al (2006) Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrason Sonochem 13:54–60

    Article  CAS  Google Scholar 

  29. Kraujalyte V, Leitner E, Venskutonis PR et al (2013) Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatography-olfactometry (GC-O) methods. J Agric Food Chem 61:4728–4736

    Article  CAS  Google Scholar 

  30. Gokbulut I, Karabulut I (2012) SPME-GC-MS detection of volatile compounds in apricot varieties. Food Chem 132:1098–1102

    Article  CAS  Google Scholar 

  31. Chai Q, Wu B, Liu W et al (2012) Volatiles of plums evaluated by HS-SPME with GC-MS at the germplasm level. Food Chem 130:432–440

    Article  CAS  Google Scholar 

  32. Song X, Ha W, Chen J et al (2014) Application of beta-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones. J Chromatogr A 1374:23–30

    Article  CAS  Google Scholar 

  33. Gay F, Maraval I, Roques S et al (2010) Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L.) in Camargue (France). Field Crops Res 117:154–160

    Article  Google Scholar 

  34. Ji T, Dami IE (2008) Characterization of free flavor compounds in traminette grape and their relationship to vineyard training system and location. J Food Sci 73:C262–C267

    Article  CAS  Google Scholar 

  35. Xie Z, Liu Q, Liang Z et al (2013) The GC/MS analysis of volatile components extracted by different methods from Exocarpium Citri Grandis. J Anal Methods Chem 2013:918406

    Article  CAS  Google Scholar 

  36. Guzmán-Gerónimo RI, López MG, Dorantes-Alvarez L (2008) Microwave processing of avocado: volatile flavor profiling and olfactometry. Innov Food Sci Emerg 9:501–506

    Article  CAS  Google Scholar 

  37. Vázquez-Araújo L, Chambers E, Funk DB (2011) References for “musty” odor notes in sensory analysis of grain sorghum. J Cereal Sci 54:460–466

    Article  CAS  Google Scholar 

  38. Kraujalytė V, Leitner E, Venskutonis PR (2012) Chemical and sensory characterisation of aroma of Viburnum opulus fruits by solid phase microextraction-gas chromatography-olfactometry. Food Chem 132:717–723

    Article  CAS  Google Scholar 

  39. Azam M, Song M, Fan F et al (2013) Comparative analysis of flower volatiles from nine citrus at three blooming stages. Int J Mol Sci 14:22346–22367

    Article  CAS  Google Scholar 

  40. Silva BM, Santos RP, Mendes LS et al (2011) Dracaena draco L. fruit: phytochemical and antioxidant activity assessment. Food Res Int 44:2182–2189

    Article  CAS  Google Scholar 

  41. Ren J, Tai Y, Dong M et al (2015) Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem 185:25–32

    Article  CAS  Google Scholar 

  42. Steingass CB, Carle R, Schmarr HG (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407:2591–2608

    Article  CAS  Google Scholar 

  43. Djozan D, Ebrahimi B (2008) Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Anal Chim Acta 616:152–159

    Article  CAS  Google Scholar 

  44. Chai M, Tan G (2010) Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber and strawberry after washing treatment. Food Chem 123:760–764

    Article  CAS  Google Scholar 

  45. Zhang Z, Huang Y, Ding W et al (2014) Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene. Anal Chem 86:3533–3540

    Article  CAS  Google Scholar 

  46. Es’haghi Z, Khalili M, Khazaeifar A et al (2011) Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique: hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry. Electrochim Acta 56:3139–3146

    Article  CAS  Google Scholar 

  47. Zhang Z, Pawliszyn J (1995) Quantitative extraction using an internally cooled solid phase microextraction device. Anal Chem 67:34–43

    Article  CAS  Google Scholar 

  48. Chen Y, Pawliszyn J (2006) Miniaturization and automation of an internally cooled coated fiber device. Anal Chem 78:5222–5226

    Article  CAS  Google Scholar 

  49. Ghiasvand AR, Setkova L, Pawliszyn J (2007) Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME-GC-TOF-MS. Flavour Fragr J 22:377–391

    Article  CAS  Google Scholar 

  50. Chai X, Jia J, Sun T et al (2008) Suitability of a novel circulating cooling SPME for analysis of organophosphorous pesticides in tomatoes. Chromatographia 67:309–313

    Article  CAS  Google Scholar 

  51. Pedroso M, Ferreira E, Hantao L et al (2011) Identification of volatiles from pineapple (Ananas comosus L.) pulp by comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry. J Sep Sci 34:1547–1554

    Article  CAS  Google Scholar 

  52. Vuckovic D, de Lannoy I, Gien B et al (2011) In vivo solid-phase microextraction: capturing the elusive portion of metabolome. Angew Chem Int Ed 50:5344–5348

    Article  CAS  Google Scholar 

  53. Vuckovic D, Risticevic S, Pawliszyn J (2011) In vivo solid-phase microextraction in metabolomics: opportunities for the direct investigation of biological systems. Angew Chem Int Ed 50:5618–5628

    Article  CAS  Google Scholar 

  54. Zhang Z, Li G (2007) A preliminary study of plant aroma profile characteristics by a combination sampling method coupled with GC-MS. Microchem J 86:29–36

    Article  CAS  Google Scholar 

  55. Soto VC, Maldonado IB, Jofré VP et al (2015) Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC-MS: relationship with pollination and seed production. Microchem J 122:110–118

    Article  CAS  Google Scholar 

  56. Kang WY, Wang JM, Tian PY (2011) Analysis of volatiles in the flowers of Patrinia scabiosifolia by HS-SPME-GC-MS. Chem Nat Compd 47:101–102

    Article  CAS  Google Scholar 

  57. Cullere L, San-Juan F, Cacho J (2011) Characterisation of aroma active compounds of Spanish saffron by gas chromatography-olfactometry: quantitative evaluation of the most relevant aromatic compounds. Food Chem 127:1866–1871

    Article  CAS  Google Scholar 

  58. Djabou N, Paolini J, Desjobert JM et al (2010) Qualitative and quantitative analysis of volatile components of Teucrium massiliense L.—identification of 6-methyl-3-heptyl acetate as a new natural product. Flavour Fragr J 25:475–487

    Article  CAS  Google Scholar 

  59. De Pinho PG, Goncalves RF, Valentao P et al (2009) Volatile composition of Catharanthus roseus (L.) G. Don using solid-phase microextraction and gas chromatography/mass spectrometry. J Pharm Biomed 49:674–685

    Article  CAS  Google Scholar 

  60. Edris AE, Chizzola R, Franz C (2008) Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt. Eur Food Res Technol 226:621–626

    Article  CAS  Google Scholar 

  61. Rout PK, Rao YR, Sree A et al (2007) Composition of essential oil, concrete, absolute, wax and headspace volatiles of Murraya paniculata (Linn.) Jack flowers. Flavour Fragr J 22:352–357

    Article  CAS  Google Scholar 

  62. Dong L, Wang J, Deng C et al (2007) Gas chromatography-mass spectrometry following pressurized hot water extraction and solid-phase microextraction for quantification of eucalyptol, camphor, and borneol in Chrysanthemum flowers. J Sep Sci 30:86–89

    Article  CAS  Google Scholar 

  63. Bianchi G, Nuzzi M, Leva AA et al (2007) Development of a headspace-solid phase micro extraction method to monitor changes in volatile profile of rose (Rosa hybrida, cv David Austin) petals during processing. J Chromatogr A 1150:190–197

    Article  CAS  Google Scholar 

  64. Maggi F, Bilek T, Cristalli G et al (2009) Comparison of the characterisation of the fruit-like aroma of Teucrium flavum L. subsp flavum by hydrodistillation and solid-phase micro-extraction. J Sci Food Agric 89:2505–2518

    Article  CAS  Google Scholar 

  65. Chung MS (2012) Volatile compounds of the Hallabong (Citrus kiyomi x Citrus ponkan) blossom. Food Sci Biotechnol 21:285–290

    Article  CAS  Google Scholar 

  66. Vázquez-Araújo L, Rodríguez-Solnan R, Cortés-Diéguez SM et al (2013) Use of hydrodistillation and headspace solid-phase microextraction to characterize the volatile composition of different hop cultivars. J Sci Food Agric 93:2568–2574

    Article  CAS  Google Scholar 

  67. Oh SY, Du Shin H, Kim SJ et al (2008) Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor. J Chromatogr A 1183:170–178

    Article  CAS  Google Scholar 

  68. Pan J, Hu Y, Liang T et al (2012) Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples. J Chromatogr A 1262:49–55

    Article  CAS  Google Scholar 

  69. Bojko B, Cudjoe E, Gómez-Ríos GA et al (2012) SPME—quo vadis? Anal Chim Acta 750:132–151

    Article  CAS  Google Scholar 

  70. Verdonk JC, Ric de Vos CH, Verhoeven HA et al (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Photochemistry 62:997–1008

    Article  CAS  Google Scholar 

  71. Manzo A, Panseri S, Vagge I et al (2014) Volatile fingerprint of Italian populations of orchids using solid phase microextraction and gas chromatography coupled with mass spectrometry. Molecules 19:7913–7936

    Article  CAS  Google Scholar 

  72. Song G, Xiao J, Deng C et al (2007) Use of solid-phase microextraction as a sampling technique for the characterization of volatile compounds emitted from Chinese daffodil flowers. J Anal Chem 62:674–679

    Article  CAS  Google Scholar 

  73. Cáceres LA, McDowell TW, Scott IM et al (2015) In vivo extraction of volatile organic compounds (VOCs) from Micro-Tom tomato flowers with multiple solid phase microextraction (SPME) fibers. Can J Chem 93:143–150

    Article  CAS  Google Scholar 

  74. Cheng WW, Lin CT, Chu FH et al (2009) Neuropharmacological activities of phytoncide released from Cryptomeria japonica. J Wood Sci 55:27–31

    Article  CAS  Google Scholar 

  75. Lin SY, Roan SF, Lee CL et al (2010) Volatile organic components of fresh leaves as indicators of indigenous and cultivated citrus species in Taiwan. Biosci Biotechnol Biochem 74:806–811

    Article  CAS  Google Scholar 

  76. Paiva MR, Mateus E, Santos MH et al (2011) Pine volatiles mediate host selection for oviposition by Thaumetopoea pityocampa (Lep., Notodontidae). J Appl Entomol 135:195–203

    Article  CAS  Google Scholar 

  77. Smith L, Beck JJ (2015) Duration of emission of volatile organic compounds from mechanically damaged plant leaves. J Plant Physiol 188:19–28

    Article  CAS  Google Scholar 

  78. Zielinska S, Piatczak E, Kalemba D et al (2011) Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fischer & C.A.Meyer) O. Kuntze. Plant Cell Tissue Organ Culture 107:161–167

    Article  CAS  Google Scholar 

  79. Weingart G, Kluger B, Forneck A et al (2012) Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of Vitis vinifera by HS-SPME-GC-MS. Phytochem Anal 23:345–358

    Article  CAS  Google Scholar 

  80. Chung MJ, Cheng SS, Lin CY et al (2012) Profiling of volatile compounds of Phyllostachys pubescens shoots in Taiwan. Food Chem 134:1732–1737

    Article  CAS  Google Scholar 

  81. Mu RM, Wang XR, Liu SX et al (2007) Rapid determination of volatile compounds in Toona sinensis (A. Juss.) Roem. by MAE-HS-SPME followed by GC-MS. Chromatographia 65:463–467

    Article  CAS  Google Scholar 

  82. Araujo HC, Lacerda MEG, Lopes D et al (2007) Studies on the aroma of mate (Ilex paraguariensis St. Hil.) using headspace solid-phase microextraction. Phytochem Anal 18:469–474

    Article  CAS  Google Scholar 

  83. Schossler P, Schneider GL, Wunsch D et al (2009) Volatile compounds of Baccharis punctulata, Baccharis dracunculifolia and Eupatorium laevigatum obtained using solid phase microextraction and hydrodistillation. J Braz Chem Soc 20:277–287

    Article  CAS  Google Scholar 

  84. Wakte KV, Thengane RJ, Jawali N et al (2010) Optimization of HS-SPME conditions for quantification of 2-acetyl-1-pyrroline and study of other volatiles in Pandanus amaryllifolius Roxb. Food Chem 121:595–600

    Article  CAS  Google Scholar 

  85. Silva CL, Camara JS (2013) Profiling of volatiles in the leaves of Lamiaceae species based on headspace solid phase microextraction and mass spectrometry. Food Res Int 51:378–387

    Article  CAS  Google Scholar 

  86. Reale S, Fasciani P, Pace L et al (2011) Volatile fingerprints of artemisinin-rich Artemisia annua cultivars by headspace solid-phase microextraction gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 25:2511–2516

    Article  CAS  Google Scholar 

  87. Lin C, Chen Y, Cheng S et al (2011) Rapid differentiation of three Chamaecyparis species (Cupressaceae) Grown in Taiwan using solid-phase microextraction-gas chromatography/mass spectrometry, cluster analysis, and principal component analysis. J Agric Food Chem 59:10854–10859

    Article  CAS  Google Scholar 

  88. Kollner TG, Lenk C, Schnee C et al (2013) Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biol 13:15

    Article  CAS  Google Scholar 

  89. Huang B, Lei Y, Tang Y et al (2011) Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin. Food Chem 125:268–275

    Article  CAS  Google Scholar 

  90. Yassaa N, Williams J (2007) Enantiomeric monoterpene emissions from natural and damaged Scots pine in a boreal coniferous forest measured using solid-phase microextraction and gas chromatography/mass spectrometry. J Chromatogr A 1141:138–144

    Article  CAS  Google Scholar 

  91. Giorgi A, Panseri S, Mattara MS et al (2013) Secondary metabolites and antioxidant capacities of Waldheimia glabra (Decne.) Regel from Nepal. J Sci Food Agric 93:1026–1034

    Article  CAS  Google Scholar 

  92. Beck JJ, Smith L, Merrill GB (2008) In situ volatile collection, analysis, and comparison of three Centaurea species and their relationship to biocontrol with herbivorous insects. J Agric Food Chem 56:2759–2764

    Article  CAS  Google Scholar 

  93. Chen Y, Cheng S, Chang S (2010) Monitoring the emission of volatile organic compounds from the leaves of Calocedrus macrolepis var. formosana using solid-phase micro-extraction. J Wood Sci 56:140–147

    Article  CAS  Google Scholar 

  94. Chen G, Jiang R, Qiu J et al (2015) Environmental fates of synthetic musks in animal and plant: an in vivo study. Chemosphere 138:584–591

    Article  CAS  Google Scholar 

  95. Chen G, Qiu J, Liu Y et al (2015) Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep 5:15682

    Article  CAS  Google Scholar 

  96. Chen G, Qiu J, Xu J et al (2016) A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chem Sci 7:1487–1495

    Article  CAS  Google Scholar 

  97. Wang R, Wang R, Yang B (2011) Comparison of volatile compound composition of cinnamon (Cinnamomum cassia Presl) bark prepared by hydrodistillation and headspace solid phase microextraction. J Food Process Eng 34:175–185

    Article  CAS  Google Scholar 

  98. Benyelles B, Allali H, El Amine Dib M et al (2014) Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC-MS and hydrodistillation techniques. J Saudi Chem Soc 18:972–976

    Article  Google Scholar 

  99. Zhang C, Qi M, Shao Q et al (2007) Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS. J Pharm Biomed 44:464–470

    Article  CAS  Google Scholar 

  100. Riu-Aumatell M, Vargas L, Vichi S et al (2011) Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled to GC-MS. Food Chem 129:557–564

    Article  CAS  Google Scholar 

  101. Lee KS, Kim GH, Kim HH et al (2012) Volatile compounds of Panax ginseng CA Meyer cultured with different cultivation methods. J Food Sci 77:C805–C810

    Article  CAS  Google Scholar 

  102. Yu Y, Huang T, Yang B et al (2007) Development of gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase microextraction for rapid determination of volatile constituents in ginger. J Pharm Biomed 43:24–31

    Article  CAS  Google Scholar 

  103. Farag MA, Wessjohann LA (2012) Volatiles profiling in medicinal licorice roots using steam distillation and solid-phase microextraction (SPME) coupled to chemometrics. J Food Sci 77:C1179–C1184

    Article  CAS  Google Scholar 

  104. Mebazaa R, Mahmoudi A, Fouchet M et al (2009) Characterisation of volatile compounds in Tunisian fenugreek seeds. Food Chem 115(2009):1326–1336

    Article  CAS  Google Scholar 

  105. Hashemi P, Shamizadeh M, Badiei A et al (2009) Study of the essential oil composition of cumin seeds by an amino ethyl-functionalized nanoporous SPME fiber. Chromatographia 70:1147–1151

    Article  CAS  Google Scholar 

  106. Azarnia S, Boye JI, Warkentin T et al (2011) Volatile flavour profile changes in selected field pea cultivars as affected by crop year and processing. Food Chem 124:326–335

    Article  CAS  Google Scholar 

  107. Azarnia S, Boye JI, Warkentin T et al (2011) Changes in volatile flavour compounds in field pea cultivars as affected by storage conditions. Int J Food Sci Technol 46:2408–2419

    Article  CAS  Google Scholar 

  108. Tamogami S, Noge K, Agrawal GK et al (2015) Methyl jasmonate elicits the production of methyl (E)-2-hexenoate from (Z)-2-hexenol via (Z)-2-hexenal in Achyranthes bidentata plant. FEBS Lett 589:390–395

    Article  CAS  Google Scholar 

  109. Min TG (2012) Detection of ethanol released from aged radish (Raphanus sativus L.) seeds using resazurin. Hortic Environ Biotechnol 53:66–71

    Article  CAS  Google Scholar 

  110. Reiche N, Mothes F, Fiedler P et al (2013) A solid-phase microextraction method for the in vivo sampling of MTBE in common reed (Phragmites australis). Environ Monit Assess 185:7133–7144

    Article  CAS  Google Scholar 

  111. Limmer MA, Balouet JC, Karg F et al (2011) Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: application to urban plume in Verl, Germany. Environ Sci Technol 45(2011):8276–8282

    Article  CAS  Google Scholar 

  112. Holm O, Rotard W (2011) Effect of radial directional dependences and rainwater influence on CVOC concentrations in tree core and birch sap samples taken for phytoscreening using HS-SPME-GC/MS. Environ Sci Technol 45:9604–9610

    Article  CAS  Google Scholar 

  113. Shanmugam PV, Yadav A, Chanotiya CS et al (2015) Enantiomer differentiation of key volatile constituents from leaves, stems, rhizome and flowers of cultivated Hedychium coronarium Koenig from India. J Essent Oil Res 27:101–106

    Article  CAS  Google Scholar 

  114. Yamani H, Mantri N, Morrison PD et al (2014) Analysis of the volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache rugosa. BMC Complement Altern Med 14:495

    Article  CAS  Google Scholar 

  115. Vázquez AM, Aimar ML, Demmel GI et al (2014) Identification of volatile compounds of Clinopodium odorum (Lamiaceae): a comparison between HS-SPME and classic hydrodistillation. Bol Latinoam Caribe Plantas Med Aromát 13:285–296

    Google Scholar 

  116. Rezazadeh M, Yamini Y, Seidi S et al (2014) Electromembrane surrounded solid phase microextraction followed by injection port derivatization and gas chromatography-flame ionization detector analysis for determination of acidic herbicides in plant tissue. J Agric Food Chem 62(2014):3134–3142

    Article  CAS  Google Scholar 

  117. Baker B, Sinnott M (2009) Analysis of sesquiterpene emissions by plants using solid phase microextraction. J Chromatogr A 1216:8442–8451

    Article  CAS  Google Scholar 

  118. Limmer MA, Holmes AJ, Burken JG et al (2014) Phytomonitoring of chlorinated ethenes in trees: a four-year study of seasonal chemodynamics in planta. Environ Sci Technol 48:10634–10640

    Article  CAS  Google Scholar 

  119. Gholivand MB, Piryaei M, Abolghasemi M (2011) Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant. Anal Chim Acta 701:1–5

    Article  CAS  Google Scholar 

  120. Togunde OP, Oakes KD, Servos MR et al (2012) Optimization of solid phase microextraction for non-lethal in vivo determination of selected pharmaceuticals in fish muscle using liquid chromatography-mass spectrometry. J Chromatogr A 1261:99–106

    Article  CAS  Google Scholar 

  121. Yeung JCY, de Lannoy I, Gien B et al (2012) Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Anal Chim Acta 742:37–44

    Article  CAS  Google Scholar 

  122. Zhang X, Oakes KD, Wang S et al (2012) In vivo sampling of environmental organic contaminants in fish by solid-phase microextraction. Trends Anal Chem 32:31–39

    Article  CAS  Google Scholar 

  123. Wang S, Oakes KD, Bragg LM et al (2011) Validation and use of in vivo solid phase micro-extraction (SPME) for the detection of emerging contaminants in fish. Chemosphere 85:1472–1480

    Article  CAS  Google Scholar 

  124. Ouyang G, Oakes KD, Bragg L et al (2011) Sampling-rate calibration for rapid and nonlethal monitoring of organic contaminants in fish muscle by solid-phase microextraction. Environ Sci Technol 45:7792–7798

    Article  CAS  Google Scholar 

  125. Parker M, Pollnitz AP, Cozzolino D et al (2007) Identification and quantification of a marker compound for ‘Pepper’ aroma and flavor in shiraz grape berries by combination of chemometrics and gas chromatography-mass spectrometry. J Agric Food Chem 55:5948–5955

    Article  CAS  Google Scholar 

  126. Marković K, Vahčić N, Ganić KK et al (2007) Aroma volatiles of tomatoes and tomato products evaluated by solid-phase microextraction. Flavour Fragr J 22:395–400

    Article  CAS  Google Scholar 

  127. Ortiz-Serrano P, Gil JV (2007) Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). J Agric Food Chem 55:9170–9176

    Article  CAS  Google Scholar 

  128. Oomah BD, Liang LS, Balasubramanian P (2007) Volatile compounds of dry beans (Phaseolus vulgaris L.). Plant Food Hum Nutr 62:177–183

    Article  CAS  Google Scholar 

  129. Balbontín C, Gaete-Eastman C, Vergara M et al (2007) Treatment with 1-MCP and the role of ethylene in aroma development of mountain papaya fruit. Postharvest Biol Technol 43:67–77

    Article  CAS  Google Scholar 

  130. Vichi S, Riu-Aumatell M, Mora-Pons M et al (2007) HS-SPME coupled to GC/MS for quality control of Juniperus communis L. berries used for gin aromatization. Food Chem 105:1748–1754

    Article  CAS  Google Scholar 

  131. Malm A, Głowniak K, Łoś R et al (2008) Variation of the volatile content of the fruits of Peucedanum alsaticum L. Acta Chromatogr 20:119–133

    Article  CAS  Google Scholar 

  132. Zhang Z, Zeng D, Li G (2008) Study of the volatile profile characteristics of longan during storage by a combination sampling method coupled with GC/MS. J Sci Food Agric 88:1035–1042

    Article  CAS  Google Scholar 

  133. Obando-Ulloa JM, Moreno E, García-Mas J et al (2008) Climacteric or non-climacteric behavior in melon fruit—1. Aroma volatiles. Postharvest Biol Technol 49:27–37

    Article  CAS  Google Scholar 

  134. Greene JL, Sanders TH, Drake MA (2008) Characterization of volatile compounds contributing to naturally occurring fruity fermented flavor in peanuts. J Agric Food Chem 56:8096–8102

    Article  CAS  Google Scholar 

  135. Chin ST, Nazimah SAH, Quek SY et al (2008) Changes of volatiles’ attribute in durian pulp during freeze- and spray-drying process. LWT Food Sci Technol 41:1899–1905

    Article  CAS  Google Scholar 

  136. Ziino M, Condurso C, Romeo V et al (2009) Volatile compounds and capsaicinoid content of fresh hot peppers (Capsicum annuum L.) of different Calabrian varieties. J Sci Food Agric 89:774–780

    Article  CAS  Google Scholar 

  137. Humston EM, Zhang Y, Brabeck GF et al (2009) Development of a GC x GC-TOFMS method using SPME to determine volatile compounds in cacao beans. J Sep Sci 32:2289–2295

    Article  CAS  Google Scholar 

  138. Ferreira L, Perestrelo R, Caldeira M et al (2009) Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. J Sep Sci 32:1875–1888

    Article  CAS  Google Scholar 

  139. Zawirska-Wojtasiak R, Goslinski M, Szwacka M et al (2009) Aroma evaluation of transgenic, thaumatin II-producing cucumber fruits. J Food Sci 74:C204–C210

    Article  CAS  Google Scholar 

  140. Wu Y, Pan Q, Qu W et al (2009) Comparison of volatile profiles of nine litchi (Litchi chinensis Sonn.) cultivars from Southern China. J Agric Food Chem 57:9676–9681

    Article  CAS  Google Scholar 

  141. Gonzalez M, Gaete-Eastman C, Valdenegro M et al (2009) Aroma development during ripening of Fragaria chiloensis fruit and participation of an alcohol acyltransferase (FcAAT1) gene. J Agric Food Chem 57:9123–9132

    Article  CAS  Google Scholar 

  142. Wang Y, Yang C, Li S et al (2009) Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chem 116:356–364

    Article  CAS  Google Scholar 

  143. Reis SFAR, Rocha SM, Barros AS et al (2009) Establishment of the volatile profile of ‘Bravo de Esmolfe’ apple variety and identification of varietal markers. Food Chem 113:513–521

    Article  CAS  Google Scholar 

  144. Fan G, Qiao Y, Yao X et al (2009) Free and bound volatile compounds in juice and peel of Jincheng oranges. Eur Food Res Technol 229:571–578

    Article  CAS  Google Scholar 

  145. Skalicka-Wozniak K, Los R, Glowniak K et al (2009) Volatile compounds in fruits of Peucedanum cervaria (LAP.) L. Chem Biodivers 6:1087–1092

    Article  CAS  Google Scholar 

  146. Rodriguez-Lafuente A, Nerin de la Puerta C, Batlle R (2009) Determination of fifteen active compounds released from paraffin-based active packaging in tomato samples via microextraction techniques. Anal Bioanal Chem 395:203–211

    Article  CAS  Google Scholar 

  147. Zhang Y, Wang G, Dong J et al (2009) Analysis of volatile components in strawberry cultivars Xingdu 1 and Xingdu 2 and their Parents. Agric Sci China 8:441–446

    Article  CAS  Google Scholar 

  148. Abrodo PA, Llorente DD, Corujedo SJ et al (2010) Characterisation of Asturian cider apples on the basis of their aromatic profile by high-speed gas chromatography and solid-phase microextraction. Food Chem 121:1312–1318

    Article  CAS  Google Scholar 

  149. Flamini G, Cioni PL (2010) Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.). Food Chem 120:984–992

    Article  CAS  Google Scholar 

  150. Oliveira AP, Silva LR, Andrade PB et al (2010) Determination of low molecular weight volatiles in Ficus carica using HS-SPME and GC/FID. Food Chem 121:1289–1295

    Article  CAS  Google Scholar 

  151. Oliveira AP, Silva LR, Guedes de Pinho P et al (2010) Volatile profiling of Ficus carica varieties by HS-SPME and GC-IT-MS. Food Chem 123:548–557

    Article  CAS  Google Scholar 

  152. Prosen H, Kokalj M, Janeš D et al (2010) Comparison of isolation methods for the determination of buckwheat volatile compounds. Food Chem 121:298–306

    Article  CAS  Google Scholar 

  153. Cheong KW, Tan CP, Mirhosseini H et al (2010) Equilibrium headspace analysis of volatile flavor compounds extracted from soursop (Annona muricata) using solid-phase microextraction. Food Res Int 43:1267–1276

    Article  CAS  Google Scholar 

  154. Ortiz-Serrano P, Gil JV (2010) Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. J Agric Food Chem 58:1106–1114

    Article  CAS  Google Scholar 

  155. Rodriguez-Burruezo A, Kollmannsberger H, Gonzalez-Mas M et al (2010) HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of capsicum fruits from the annuum-chinense-frutescens complex. J Agric Food Chem 58:4388–4400

    Article  CAS  Google Scholar 

  156. Wang Y, Yang C, Liu C et al (2010) Effects of bagging on volatiles and polyphenols in “Wanmi” peaches during endocarp hardening and final fruit rapid growth stages. J Food Sci 75:S455–S460

    Article  CAS  Google Scholar 

  157. Lo Bianco R, Farina V, Indelicato SG et al (2010) Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. J Sci Food Agric 90:1008–1019

    CAS  Google Scholar 

  158. Yang X, Song J, Fillmore S et al (2011) Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit. Postharvest Biol Technol 62:246–257

    Article  CAS  Google Scholar 

  159. Yang C, Wang Y, Wu B et al (2011) Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chem 128:823–830

    Article  CAS  Google Scholar 

  160. Thuaytong W, Anprung P (2011) Bioactive compounds and prebiotic activity in Thailand-grown red and white guava fruit (Psidium guajava L.). Food Sci Technol Int 17:205–212

    Article  CAS  Google Scholar 

  161. Perestrelo R, Barros AS, Rocha SM et al (2011) Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta 85:1483–1493

    Article  CAS  Google Scholar 

  162. Oh SH, Lim BS, Hong SJ et al (2011) Aroma volatile changes of netted muskmelon (Cucumis melo L.) fruit during developmental stages. Hortic Environ Biotechnol 52:590–595

    Article  CAS  Google Scholar 

  163. Meret M, Brat P, Mertz C et al (2011) Contribution to aroma potential of Andean blackberry (Rubus glaucus Benth.). Food Res Int 44:54–60

    Article  CAS  Google Scholar 

  164. Mathure SV, Wakte KV, Jawali N et al (2011) Quantification of 2-acetyl-1-pyrroline and other rice aroma volatiles among Indian scented rice cultivars by HS-SPME/GC-FID. Food Anal Method 4:326–333

    Article  Google Scholar 

  165. Martendal E, De Souza Silveira CD, Nardini GS et al (2011) Use of different sample temperatures in a single extraction procedure for the screening of the aroma profile of plant matrices by headspace solid-phase microextraction. J Chromatogr A 1218:3731–3736

    Article  CAS  Google Scholar 

  166. Malheiro R, De Pinho PG, Casal S et al (2011) Determination of the volatile profile of stoned table olives from different varieties by using HS-SPME and GC/IT-MS. J Sci Food Agr 91:1693–1701

    Article  CAS  Google Scholar 

  167. Ma Y, Song D, Wang Z et al (2011) Effect of ultrahigh pressure treatment on volatile compounds in garlic. J Food Process Eng 34:1915–1930

    Article  CAS  Google Scholar 

  168. Kim NY, Park MH, Jang EY et al (2011) Volatile distribution in garlic (Allium sativum L.) by solid phase microextraction (SPME) with different processing conditions. Food Sci Biotechnol 20:775–782

    Article  CAS  Google Scholar 

  169. Gebara SS, De Oliveira Ferreira W, Ré-Poppi N et al (2011) Volatile compounds of leaves and fruits of Mangifera indica var. coquinho (Anacardiaceae) obtained using solid phase microextraction and hydrodistillation. Food Chem 127:689–693

    Article  CAS  Google Scholar 

  170. Cha DH, Loeb GM, Linn CE et al (2011) Electrophysiological and behavioral identification of a volatile blend involved in host location of female strawberry sap beetle, Stelidota geminata. Entomol Exp Appl 140:153–162

    Article  CAS  Google Scholar 

  171. Junior SB, De Marchi Tavares de Melo A, Zini CA et al (2011) Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction. J Chromatogr A 1218:3345–3350

    Article  CAS  Google Scholar 

  172. Aprea E, Gika H, Carlin S et al (2011) Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. J Chromatogr A 1218:4517–4524

    Article  CAS  Google Scholar 

  173. Beaulieu JC, Ingber BF, Lea JM (2011) Physiological, volatile, and SEM surface effects resulting from cutting and dipping treatments in cantaloupe. J Food Sci 76:S415–S422

    Article  CAS  Google Scholar 

  174. Fong SS, Sagi-Kiss V, Brereton RG (2011) Self-organizing maps and support vector regression as aids to coupled chromatography: illustrated by predicting spoilage in apples using volatile organic compounds. Talanta 83:1269–1278

    Article  CAS  Google Scholar 

  175. Zheng LY, Sun GM, Liu YG et al (2012) Aroma volatile compounds from two fresh pineapple varieties in China. Int J Mol Sci 13:7383–7392

    Article  CAS  Google Scholar 

  176. Sanchez G, Besada C, Badenes ML et al (2012) A non-targeted approach unravels the volatile network in peach fruit. PLoS ONE 7:e38992

    Article  CAS  Google Scholar 

  177. Qin G, Tao S, Cao Y et al (2012) Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS. Food Chem 134:2367–2382

    Article  CAS  Google Scholar 

  178. Pontes M, Pereira J, Câmara JS (2012) Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile. Food Chem 134:2509–2520

    Article  CAS  Google Scholar 

  179. Perestrelo R, Caldeira M, Camara JS (2012) Solid phase microextraction as a reliable alternative to conventional extraction techniques to evaluate the pattern of hydrolytically released components in Vitis vinifera L. grapes. Talanta 95:1–11

    Article  CAS  Google Scholar 

  180. Moreno E, Fita A, González-Mas MC et al (2012) HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Sci Hortic 135:87–97

    Article  CAS  Google Scholar 

  181. May B, Wüst M (2012) Temporal development of sesquiterpene hydrocarbon profiles of different grape varieties during ripening. Flavour Frag J 27:280–285

    Article  CAS  Google Scholar 

  182. Lasekan O (2012) Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) determination of volatile compounds in roasted plantains (French sombre and Dwarf Kalapua). LWT Food Sci Technol 46:536–541

    Article  CAS  Google Scholar 

  183. Goldenberg L, Feygenberg O, Samach A et al (2012) Ripening attributes of new passion fruit line featuring seasonal non-climacteric behavior. J Agric Food Chem 60:1810–1821

    Article  CAS  Google Scholar 

  184. Farneti B, Cristescu SM, Costa G et al (2012) Rapid tomato volatile profiling by using proton-transfer reaction mass spectrometry (PTR-MS). J Food Sci 77:C551–C559

    Article  CAS  Google Scholar 

  185. Drew DP, Rasmussen SK, Avato P et al (2012) A comparison of headspace solid-phase microextraction and classic hydrodistillation for the identification of volatile constituents from thapsia spp. provides insights into guaianolide biosynthesis in apiaceae. Phytochem Anal 23:44–51

    Article  CAS  Google Scholar 

  186. Chizzola R, Saeidnejad AH, Azizi M et al (2014) Bunium persicum: variability in essential oil and antioxidants activity of fruits from different Iranian wild populations. Genet Resour Crop Evol 61(2014):1621–1631

    Article  CAS  Google Scholar 

  187. Chin ST, Nazimah SAH, Quek SY et al (2007) Analysis of volatile compounds from Malaysian durians (Durio zibethinus) using headspace SPME coupled to fast GC-MS. J Food Compos Anal 20:31–44

    Article  CAS  Google Scholar 

  188. Bicchi C, Cordero C, Liberto E et al (2007) Reliability of fibres in solid-phase microextraction for routine analysis of the headspace of aromatic and medicinal plants. J Chromatogr A 1152:138–149

    Article  CAS  Google Scholar 

  189. Bar-Akiva A, Ovadia R, Rogachev I et al (2010) Metabolic networking in Brunfelsia calycina petals after flower opening. J Exp Bot 61:1393–1403

    Article  CAS  Google Scholar 

  190. Fujii T, Hori M, Matsuda K (2010) Attractants for rice leaf bug, Trigonotylus caelestialium (Kirkaldy), are emitted from flowering rice panicles. J Chem Ecol 36:999–1005

    Article  CAS  Google Scholar 

  191. Del Castillo MLR, Blanch GP (2007) Enantiomeric purity of (±)-methyl jasmonate in fresh leaf samples and commercial fragrances. J Sep Sci 30:2117–2122

    Article  CAS  Google Scholar 

  192. Hori M (2007) Onion aphid (Neotoxoptera formosana) attractants, in the headspace of Allium fistulosum and A. tuberosum leaves. J Appl Entomol 131:8–12

    Article  CAS  Google Scholar 

  193. Lagalante AF, Montgomery ME, Calvosa FC et al (2007) Characterization of terpenoid volatiles from cultivars of eastern hemlock (Tsuga canadensis). J Agric Food Chem 55:10850–10856

    Article  CAS  Google Scholar 

  194. Sansom CE, Jones VS, Joyce NI et al (2015) Flavor, glucosinolates, and isothiocyanates of Nau (Cook’s scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species. J Agric Food Chem 63:1833–1838

    Article  CAS  Google Scholar 

  195. Wu Q, Wu D, Guan Y (2014) Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue. J Chromatogr A 1342:16–23

    Article  CAS  Google Scholar 

  196. Hantao LW, Aleme HG, Passador MM et al (2013) Determination of disease biomarkers in Eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis. J Chromatogr A 1279:86–91

    Article  CAS  Google Scholar 

  197. Wang X, Ma Q, Li M et al (2013) Automated and sensitive analysis of 28-epihomobrassinolide in Arabidopsis thaliana by on-line polymer monolith microextraction coupled to liquid chromatography-mass spectrometry. J Chromatogr A 1317:121–128

    Article  CAS  Google Scholar 

  198. Hantao LW, Toledo BR, De Lima Ribeiro FA et al (2013) Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 116:1079–1084

    Article  CAS  Google Scholar 

  199. Kollner TG, Lenk C, Schnee C et al (2013) Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biol 13:15

    Article  CAS  Google Scholar 

  200. Durant AA, Rodriguez C, Herrera L et al (2014) Anti-malarial activity and HS-SPME-GC-MS chemical profiling of Plinia cerrocampanensis leaf essential oil. Malaria J 13:18

    Article  CAS  Google Scholar 

  201. Engelberth J, Alborn HT, Schmelz EA et al (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  CAS  Google Scholar 

  202. Hymete A, Rohloff J, Iversen TH et al (2007) Volatile constituents of the roots of Echinops kebericho Mesfin. Flavour Fragr J 22:35–38

    Article  CAS  Google Scholar 

  203. Martendal E, Silveira CDD, Nardini GS et al (2011) Use of different sample temperatures in a single extraction procedure for the screening of the aroma profile of plant matrices by headspace solid-phase microextraction. J Chromatogr A 1218:3731–3736

    Article  CAS  Google Scholar 

  204. Da Silva CEL, CostaWF Da, Minguzzi S et al (2013) Assessment of volatile chemical composition of the essential oil of Jatropha ribifolia (Pohl) Baill by HS-SPME-GC-MS using different fibers. J Anal Methods Chem 2013:352606

    Article  CAS  Google Scholar 

  205. Wölwer-Rieck U, May B, Lankes C et al (2014) Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana bertoni. J Agric Food Chem 62:2428–2435

    Article  CAS  Google Scholar 

  206. Flamini G, Tebano M, Cioni PL (2007) Volatiles emission patterns of different plant organs and pollen of Citrus limon. Anal Chim Acta 589:120–124

    Article  CAS  Google Scholar 

  207. De Pinho PG, Goncalves RF, Valentao P et al (2009) Volatile composition of Catharanthus roseus (L.) G. Don using solid-phase microextraction and gas chromatography/mass spectrometry. J Pharm Biomed 49:674–685

    Article  CAS  Google Scholar 

  208. Djabou N, Paolini J, Desjobert JM et al (2010) Qualitative and quantitative analysis of volatile components of Teucrium massiliense L.—identification of 6-methyl-3-heptyl acetate as a new natural product. Flavour Fragr J 25:475–487

    Article  CAS  Google Scholar 

  209. Fujii T, Hori M, Matsuda K (2010) Attractants for Rice Leaf Bug, Trigonotylus caelestialium (Kirkaldy), are emitted from flowering rice panicles. J Chem Ecol 36:999–1005

    Article  CAS  Google Scholar 

  210. Maccioni S, Baldini R, Cioni PL et al (2007) In vivo volatiles emission and essential oils from different organs and pollen of Cistus albidus from Caprione (Eastern Liguria, Italy). Flavour Fragr J 22:61–65

    Article  CAS  Google Scholar 

  211. Gebara SS, Ferreira ED, Re-Poppi N et al (2011) Volatile compounds of leaves and fruits of Mangifera indica var. coquinho (Anacardiaceae) obtained using solid phase microextraction and hydrodistillation. Food Chem 127:689–693

    Article  CAS  Google Scholar 

  212. Bicchi C, Cordero C, Liberto E et al (2007) Reliability of fibres in solid-phase microextraction for routine analysis of the headspace of aromatic and medicinal plants. J Chromatogr A 1152:138–149

    Article  CAS  Google Scholar 

  213. Maraval I, Sen K, Agrebi A et al (2010) Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry. Anal Chim Acta 675:148–155

    Article  CAS  Google Scholar 

  214. Yang ZB, Mao HL, Kang WY et al (2010) Rapid determination of volatile compounds in Gymnotheca involucrata Pei. by MAE-HS-SPME followed by GC-MS. J Am Oil Chem Soc 87:737–745

    Article  CAS  Google Scholar 

  215. Paolini J, Nasica E, Desjobert JM et al (2008) Analysis of volatile constituents isolated by hydrodistillation and headspace solid-phase microextraction from Adenostyles briquetii Gamisans. Phytochem Anal 19:266–276

    Article  CAS  Google Scholar 

  216. Mucciarelli M, Camusso W, Maffei M et al (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microb Ecol 54:685–696

    Article  CAS  Google Scholar 

  217. Fernandes F, De Pinho PG, Valentao P et al (2009) Volatile constituents throughout Brassica oleracea L. Var. acephala germination. J Agric Food Chem 57:6795–6802

    Article  CAS  Google Scholar 

  218. Courtois EA, Painec CET, Blandinieres PA et al (2009) Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana. J Chem Ecol 35:1349–1362

    Article  CAS  Google Scholar 

  219. Maggi F, Martonfi P, Conti F et al (2011) Volatile components of whole and different plant parts of bastard balm (Melittis melissophyllum L., Lamiaceae) collected in Central Italy and Slovakia. Chem Biodivers 8:2057–2079

    Article  CAS  Google Scholar 

  220. Wang YL, Zeng ZR, Liu MM et al (2008) Determination of organophosphorus pesticides in pakchoi samples by headspace solid-phase microextraction coupled with gas chromatography using home-made fiber. Eur Food Res Technol 226:1091–1098

    Article  CAS  Google Scholar 

  221. Chung MS (2010) Volatile compounds of the cultivated dumebuchu (Allium senescens L. var. senescens). Food Sci Biotechnol 19:1679–1682

    Article  CAS  Google Scholar 

  222. Zhang Y, Wang X, Cp Lin et al (2012) A novel SPME fiber chemically linked with 1-vinyl-3-hexadecylimidazolium hexafluorophosphate ionic liquid coupled with GC for the simultaneous determination of pyrethroids in vegetables. Chromatographia 75:789–797

    Article  CAS  Google Scholar 

  223. Ghiasvand AR, Nasseri M, Farsizaeh S et al (2011) Chemical characterization of cultivated Tagetes minuta L. by use of ultrasound-assisted head space SPME and GC-MS. Chromatographia 73:1031–1035

    Article  CAS  Google Scholar 

  224. Choi HS, Min KC (2008) Aroma-active compounds of Elsholtzia splendens using AEDA and HS-SPME-GC-O dilution analysis. Flavour Fragr J 23:58–64

    Article  CAS  Google Scholar 

  225. Dawidowicz AL, Rado E, Wianowska D et al (2008) Application of PLE for the determination of essential oil components from Thymus vulgaris L. Talanta 76:878–884

    Article  CAS  Google Scholar 

  226. Moreno DV, Ferrera ZS, Rodriguez JJS (2007) SPME and SPE comparative study for coupling with microwave-assisted micellar extraction in the analysis of organochlorine pesticides residues in seaweed samples. Microchem J 87:139–146

    Article  CAS  Google Scholar 

  227. Tigrine-Kordjani N, Chemat F, Meklati BY et al (2007) Relative characterization of rosemary samples according to their geographical origins using microwave-accelerated distillation, solid-phase microextraction and Kohonen self-organizing maps. Anal Bioanal Chem 389:631–641

    Article  CAS  Google Scholar 

  228. Valtiner SM, Bonn GK, Huck CW (2008) Characterisation of different types of hay by solid-phase micro-extraction-gas chromatography mass spectrometry and multivariate data analysis. Phytochem Anal 19:359–367

    Article  CAS  Google Scholar 

  229. de Oliveira ALL, da Silva DB, Turatti ICC et al (2009) Volatile constituents of Brazilian Bostrychia species (Rhodomelaceae) from mangrove and rocky shore. Biochem Syst Ecol 37:761–765

    Article  CAS  Google Scholar 

  230. Maggi F, Conti F, Cristalli G et al (2011) Chemical differences in volatiles between Melittis melissophyllum L. subsp melissophyllum and subsp albida (Guss) P. W. Ball (Lamiaceae) determined by solid-phase microextraction (SPME) coupled with GC/FID and GC/MS. Chem Biodivers 8:325–343

    Article  CAS  Google Scholar 

  231. Siripatrawan U, Harte BR (2007) Solid phase microextraction/gas chromatography/mass spectrometry integrated with chemometrics for detection of Salmonella typhimurium contamination in a packaged fresh vegetable. Anal Chim Acta 581:63–70

    Article  CAS  Google Scholar 

  232. Lei FF, Huang JY, Zhang XN et al (2011) Determination of polycyclic aromatic hydrocarbons in vegetables by headspace SPME-GC. Chromatographia 74:99–107

    Article  CAS  Google Scholar 

  233. Bukvicki D, Gottardi D, Veljic M et al (2012) Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity. Molecules 17:6982–6995

    Article  CAS  Google Scholar 

  234. Musarurwa HT, Koegelenberg L, Makunga NP (2012) Chemical variation in essential oil profiles detected using headspace solid-phase microextraction gas chromatography spectrometry in response to potassium, nitrogen, and water available to micropropagated plants of Salvia stenophylla (Burch. ex Benth.). J Plant Growth Regul 31:207–220

    Article  CAS  Google Scholar 

  235. Djabou N, Andreani S, Varesi L et al (2013) Analysis of the volatile fraction of Teucrium marum L. Flavour Fragr J 28:14–24

    Article  CAS  Google Scholar 

  236. Gholivand MB, Piryaei M, Abolghasemi MM et al (2013) Rapid analysis of volatile components from Teucrium polium L. by nanoporous silica-polyaniline solid phase microextraction fibre. Phytochem Anal 24:69–74

    Article  CAS  Google Scholar 

  237. Giorgi A, Marinis PD, Granelli G, et al (2013) Secondary metabolite profile, antioxidant capacity, and mosquito repellent activity of Bixa orellana from Brazilian Amazon region. J Chem 409826

    Google Scholar 

  238. Alvarez-Ospina H, Cruz IR, Duarte G et al (2013) HPLC determination of the major active flavonoids and GCMS Analysis of volatile components of Dysphania graveolens (Amaranthaceae). Phytochem Anal 24:248–254

    Article  CAS  Google Scholar 

  239. Vázquez AM, Aimar ML, Demmel GI et al (2013) Determination of volatile organic compounds of Tagetes filifolia Lag. (Asteraceae) from Cordoba (Argentina) using HS-SPME analysis. Bol Latinoam Caribe Plantas Med Aromát 12:143–149

    Google Scholar 

  240. Pistelli L, Noccioli C, Dangiolillo F et al (2013) Composition of volatile in micropropagated and field grown aromatic plants from Tuscany Islands. Acta Biochim Pol 60:43–50

    CAS  Google Scholar 

  241. Vázquez AM, Aimar ML, Demmel GI et al (2014) Identification of volatile compounds of Clinopodium odorum (Lamiaceae): A comparison between HS-SPME and classic hydrodistillation. Bol Latinoam Caribe Plantas Med Aromát 13:285–296

    Google Scholar 

  242. Truong D-H, Delory BM, Vanderplanck M et al (2014) Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis. Arthropod Plant Interact 8:317–327

    Google Scholar 

  243. Dagdelen S, Bilenler T, Durmaz G et al (2014) Volatile composition, antioxidant and antimicrobial activities of herbal plants used in the manufacture of van herby (OTLU) cheese. J Food Process Preserv 38:1716–1725

    Article  CAS  Google Scholar 

  244. Freidig AK, Goldman IL (2014) Geosmin (2 beta,6 alpha-dimethylbicyclo [4.4.0]decan-1 beta-ol) production associated with Beta vulgaris ssp. vulgaris is cultivar specific. J Agric Food Chem 62:2031–2036

    Article  CAS  Google Scholar 

  245. Oomah BD, Razafindrainibe M, Drover JCG (2014) Headspace volatile components of Canadian grown low-tannin faba bean (Vicia faba L.) genotypes. J Agric Food Chem 94:473–481

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by projects of National Natural Science Foundation of China (21377172, 21225731, 21477166, 21527813), and the NSF of Guangdong Province (S2013030013474)

We acknowledge financial support from the projects of NNSFC (Grants 21377172, 21677182)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, F., Chen, G. (2017). Applications of In Vivo and In Vitro Solid-Phase Microextraction Techniques in Plant Analysis. In: Ouyang, G., Jiang, R. (eds) Solid Phase Microextraction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53598-1_9

Download citation

Publish with us

Policies and ethics