Skip to main content

Application of Solid-Phase Microextraction in Soil and Sediment Sampling

  • Chapter
  • First Online:
Solid Phase Microextraction

Abstract

Solid-phase microextraction (SPME) has been widely applied in environmental analysis and received increasing attention in the sampling of soil/sediment due to its recognized advantages over the traditional methods. In this chapter, recent development of SPME for soil/sediment sampling is summarized. The method development including the selection of sampling formats, fiber coatings, extraction-phase geometries, and calibration methods is discussed in detail. Finally, the application of SPME for sensing of the freely dissolved organic compounds in pore water; the determination of the partition coefficients of organic pollutants between the sediment and pore water; the characterization of the bioavailability of organic pollutants in the soil/sediment; and the use as a biomimetic tool are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCF:

Bioconcentration factor

BFRs:

Brominated flame retardants

BTEX:

Benzene, toluene, ethylbenzene, xylene

CAR/PDMS:

Carboxen/polydimethylsiloxane

CE:

Capillary electrophoresis

CW/DVB:

Carbowax/divinylbenzene

CW:

Carbon wax

DI:

Direct immersion

DVB:

Divinylbenzene

EC:

Equilibrium calibration

ECC:

External calibration curve

EVA:

Ethylene-vinyl acetate

GC:

Gas chromatography

HOCs:

Hydrophobic organic compounds

HS:

Headspace

IL:

Ionic liquid

IMS:

Ion mass spectrometry

IS:

Internal standard

LC:

Liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

MDL:

Method detection limit

MS:

Mass spectrometry

MWA:

Microwave-assisted

OCPs:

Organochlorine pesticides

OS:

Ultrasound

PA:

Polyacrylate

PAHs:

Polyaromatic hydrocarbon

PBDEs:

Polybrominated diphenyl ethers

PCBs:

Polychlorinated biphenyls

PCRs:

Performance reference compounds

PDMS:

Polydimethylsiloxane

PHW:

Pressured hot water

PPy:

Dodecylsulfate-doped polypyrrole

SBSE:

Stir bar sorptive extraction

SPME:

Solid-phase microextraction

TNT:

Trinitrotoluene

USA:

Ultrasonic-assisted

References

  1. Mayer P, Vaes WHJ, Wijnker F et al (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183. doi:10.1021/es001179g

    Article  CAS  Google Scholar 

  2. Stringer RD, Burken JG, Elmore AC, Reible DD (2014) Using in situ solid phase microextraction (SPME) for depth profiling in sediments treated with activated carbon. J Soils Sediments. doi:10.1007/s11368-014-0857-9

    Google Scholar 

  3. Rico-Rico A, Droge STJ, Hermens JLM (2010) Predicting sediment sorption coefficients for linear alkylbenzenesulfonate congeners from polyacrylate-water partition coefficients at different salinities. Environ Sci Technol 44:941–947. doi:10.1021/es902453s

    Article  CAS  Google Scholar 

  4. Conder JM, La Point TW (2005) Solid-phase microextraction for predicting the bioavailability of 2,4,6-trinitrotoluene and its primary transformation products in sediment and water. Environ Toxicol Chem 24:1059–1066

    Article  CAS  Google Scholar 

  5. Bergknut M, Sehlin E, Lundstedt S et al (2007) Comparison of techniques for estimating PAH bioavailability: uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ Pollut 145:154–160. doi:10.1016/j.envpol.2006.03.052

    Article  CAS  Google Scholar 

  6. Hunter W, Xu Y, Spurlock F, Gan J (2008) Using disposable polydimethylsiloxane fibers to assess the bioavailability of permethrin in sediment. Environ Toxicol Chem 27:568–575. doi:10.1897/07-335

    Article  CAS  Google Scholar 

  7. Fang H, Chu X, Wang X et al (2010) Using matrix solid-phase microextraction (matrix-SPME) to estimate bioavailability of DDTs in soil to both earthworm and vegetables. Arch Environ Contam Toxicol 58:62–70. doi:10.1007/s00244-009-9329-4

    Article  CAS  Google Scholar 

  8. Maruya KA, Lao W, Tsukada D, Diehl DW (2015) A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: comparing freely-dissolved concentration with bioaccumulation. Chemosphere 137:192–197. doi:10.1016/j.chemosphere.2015.07.042

    Article  CAS  Google Scholar 

  9. Jonker MTO, Van der Heijden SA, Kreitinger JP, Hawthorne SB (2007) Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ Sci Technol 41:7472–7478

    Article  CAS  Google Scholar 

  10. Zhao R, Wang X, Yuan J et al (2006) A novel headspace solid-phase microextraction method for the exact determination of organochlorine pesticides in environmental soil samples. Anal Bioanal Chem 384:1584–1589. doi:10.1007/s00216-006-0341-5

    Article  CAS  Google Scholar 

  11. Van der Wal L, van Gestel CAM, Hermens JLM (2004) Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a laboratory standard soil. Chemosphere 54:561–568. doi:10.1016/j.chemosphere.2003.08.016

    Article  Google Scholar 

  12. Van der Wal L, Jager T, Fleuren RRHLJ et al (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38:4842–4848. doi:10.1021/es035318g

    Article  Google Scholar 

  13. Ter Laak TL, Barendregt A, Hermens JLM et al (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ Sci Technol 40:2184–2190. doi:10.1021/es0524548

    Article  Google Scholar 

  14. Hunter W, Yang Y, Reichenberg F et al (2009) Measuring pyrethroids in sediment pore water using matrix-solid phase microextraction. Environ Toxicol Chem 28:36–43. doi:10.1897/08-209.1

    Article  CAS  Google Scholar 

  15. Bielská L, Šmídová K, Hofman J (2014) Solid phase microextraction of organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms. Ecotoxicol Environ Saf 100:44–52. doi:10.1016/j.ecoenv.2013.11.011

    Article  Google Scholar 

  16. Chen Y, Geurts M, Sjollema SB et al (2014) Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations. Environ Toxicol Chem 33:606–615. doi:10.1002/etc.2465

    Article  CAS  Google Scholar 

  17. Liu H-C, Hwu C-S, Lu C-J (2010) Effect of surfactant on the estimation by solid phase microextraction of bioavailable pyrene in soil samples. World J Microbiol Biotechnol 27:1071–1076. doi:10.1007/s11274-010-0552-y

    Article  CAS  Google Scholar 

  18. Liu H-C, Hwu C-S, Chu K-C, Lu C-J (2010) Estimation of bioavailability and potential risks of naphthalene in soils with solid phase microextraction. World J Microbiol Biotechnol 26:1311–1316. doi:10.1007/s11274-009-0302-1

    Article  CAS  Google Scholar 

  19. Pino V, Ayala JH, Afonso AM, González V (2003) Micellar microwave-assisted extraction combined with solid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in a certified marine sediment. Anal Chim Acta 477:81–91. doi:10.1016/S0003-2670(02)01410-1

    Article  CAS  Google Scholar 

  20. Pino V, Ayala JH, González V, Afonso AM (2007) Determination of the alkyl- and methoxy-phenolic content in wood extractives by micellar solid-phase microextraction and gas chromatography-mass spectrometry. Talanta 73:505–513. doi:10.1016/j.talanta.2007.04.013

    Article  CAS  Google Scholar 

  21. Guerra-Abreu L, Pino V, Anderson JL, Afonso AM (2008) Coupling the extraction efficiency of imidazolium-based ionic liquid aggregates with solid-phase microextraction-gas chromatography-mass spectrometry. Application to polycyclic aromatic hydrocarbons in a certified reference sediment. J Chromatogr A 1214:23–29. doi:10.1016/j.chroma.2008.10.084

    Article  CAS  Google Scholar 

  22. Wang Y, Zhang J, Ding Y et al (2009) Quantitative determination of 16 polycyclic aromatic hydrocarbons in soil samples using solid-phase microextraction. J Sep Sci 32:3951–3957. doi:10.1002/jssc.200900420

    Article  CAS  Google Scholar 

  23. Wei M, Jen J (2003) Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-electron-capture detection. J Chromatogr A 1012:111–118

    Article  CAS  Google Scholar 

  24. Đurović RD, Đorđević TM (2012) Effects of soil composition on solid phase microextraction determination of triazine and organophosphorus pesticides. J Environ Sci Heal Part B 47:851–857. doi:10.1080/03601234.2012.693860

    Article  Google Scholar 

  25. Orzechowska G, Kidd R (2011) Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry. Int J Astrobiol 10:209–219. doi:10.1017/S1473550410000443

    Article  CAS  Google Scholar 

  26. Rearden P, Harrington PB (2005) Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS). Anal Chim Acta 545:13–20. doi:10.1016/j.aca.2005.04.035

    Article  CAS  Google Scholar 

  27. Ezquerro Ó, Ortiz G, Pons B, Tena MT (2004) Determination of benzene, toluene, ethylbenzene and xylenes in soils by multiple headspace solid-phase microextraction. J Chromatogr A 1035:17–22. doi:10.1016/j.chroma.2004.02.030

    Article  CAS  Google Scholar 

  28. Salgado-Petinal C, Garcia-Chao M, Llompart M et al (2006) Headspace solid-phase microextraction gas chromatography tandem mass spectrometry for the determination of brominated flame retardants in environmental solid samples. Anal Bioanal Chem 385:637–644. doi:10.1007/s00216-006-0440-3

    Article  CAS  Google Scholar 

  29. Banar M, Ozkan A, Vardar C (2007) Characterization of an urban landfill soil by using physicochemical analysis and solid phase microextraction (SPME)-GC/MS. Environ Monit Assess 127:337–351. doi:10.1007/s10661-006-9284-8

    Article  CAS  Google Scholar 

  30. Chang SM, Doong RA (2006) Concentration and fate of persistent organochlorine pesticides in estuarine sediments using headspace solid-phase microextraction. Chemosphere 62:1869–1878. doi:10.1016/j.chemosphere.2005.07.023

    Article  CAS  Google Scholar 

  31. De Souza Silveira CD, Martendal E, Soldi V, Carasek E (2012) Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in leather. J Sep Sci 35:602–607. doi:10.1002/jssc.201100726

    Article  Google Scholar 

  32. Carvalho PN, Rodrigues PNR, Alves F et al (2008) An expeditious method for the determination of organochlorine pesticides residues in estuarine sediments using microwave assisted pre-extraction and automated headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry. Talanta 76:1124–1129. doi:10.1016/j.talanta.2008.05.035

    Article  CAS  Google Scholar 

  33. Herbert P, Silva AL, João MJ et al (2006) Determination of semi-volatile priority pollutants in landfill leachates and sediments using microwave-assisted headspace solid-phase microextraction. Anal Bioanal Chem 386:324–331. doi:10.1007/s00216-006-0632-x

    Article  CAS  Google Scholar 

  34. Wu S-F, Ding W-H (2010) Fast determination of synthetic polycyclic musks in sewage sludge and sediments by microwave-assisted headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A 1217:2776–2781. doi:10.1016/j.chroma.2010.02.067

    Article  CAS  Google Scholar 

  35. Zygmunt B, Namiesnik J (2001) Solid-phase microextraction-gas chromatographic determination of volatile monoaromatic hydrocarbons in soil. Fresenius J Anal Chem 370:1096–1099

    Article  CAS  Google Scholar 

  36. Zhang Z, Pawliszyn J (1995) Quantitative extraction using an internally cooled solid phase microextraction device. Anal Chem 67:34–43. doi:10.1021/ac00097a007

    Article  CAS  Google Scholar 

  37. Jiang R, Carasek E, Risticevic S et al (2012) Evaluation of a completely automated cold fiber device using compounds with varying volatility and polarity. Anal Chim Acta 742:22–29. doi:10.1016/j.aca.2012.01.010

    Article  CAS  Google Scholar 

  38. Ghiasvand AR, Hosseinzadeh S, Pawliszyn J (2006) New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment. J Chromatogr A 1124:35–42. doi:10.1016/j.chroma.2006.04.088

    Article  CAS  Google Scholar 

  39. Gouliarmou V, Mayer P (2012) Sorptive bioaccessibility extraction (SBE) of soils: combining a mobilization medium with an absorption sink. Environ Sci Technol 46:10682–10689. doi:10.1021/es301515s

    Article  CAS  Google Scholar 

  40. Guo M, Gong Z, Allinson G et al (2016) Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Chemosphere 144:1513–1520. doi:10.1016/j.chemosphere.2015.10.027

    Article  CAS  Google Scholar 

  41. Concha-graña E, Fernández-gonzález V, Grueiro-noche G, Muniategui-lorenzo S (2010) Development of an environmental friendly method for the analysis of organochlorine pesticides in sediments. Chemosphere 79:698–705. doi:10.1016/j.chemosphere.2010.02.052

    Article  Google Scholar 

  42. Mäenpää K, Leppänen MT, Reichenberg F et al (2011) Equilibrium sampling of persistent and bioaccumulative compounds in soil and sediment: comparison of two approaches to determine equilibrium partitioning concentrations in lipids. Environ Sci Technol 45:1041–1047. doi:10.1021/es1029969

    Article  Google Scholar 

  43. Cui X, Bao L, Gan J (2013) Solid-phase microextraction (SPME) with stable isotope calibration for measuring bioavailability of hydrophobic organic contaminants. Environ Sci Technol 47:9833–9840. doi:10.1021/es4022987

    Article  CAS  Google Scholar 

  44. Rakowska MI, Kupryianchyk D, Koelmans AA et al (2014) Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field. Water Res 67:96–104. doi:10.1016/j.watres.2014.07.046

    Article  CAS  Google Scholar 

  45. Montes R, Rodríguez I, Cela R (2010) Solid-phase microextraction with simultaneous oxidative sample treatment for the sensitive determination of tetra- to hexa-brominated diphenyl ethers in sediments. J Chromatogr A 1217:14–21. doi:10.1016/j.chroma.2009.11.029

    Article  CAS  Google Scholar 

  46. Wang W, Delgado-Moreno L, Ye Q, Gan J (2011) Improved measurements of partition coefficients for polybrominated diphenyl ethers. Environ Sci Technol 45:1521–1527. doi:10.1021/es103087a

    Article  CAS  Google Scholar 

  47. Guez Ä, Vega Moreno G, Sosa Ferrera Z, Santana Rodríguez JJ (2006) Sample extraction method combining micellar extraction-SPME and HPLC for the determination of organochlorine pesticides in agricultural soils. J Agric Food Chem 54:7747–7752

    Article  Google Scholar 

  48. Moreno DV, Ferrera ZS, Rodr JS (2006) Microwave assisted micellar extraction coupled with solid phase microextraction for the determination of organochlorine pesticides in soil samples. Anal Chim Acta 571:51–57. doi:10.1016/j.aca.2006.04.046

    Article  CAS  Google Scholar 

  49. Lu Y, Zhu Y (2013) Determination of chlorobenzenes in textiles by pressurized hot water extraction followed by vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry. J Chromatogr A 1319:27–34. doi:10.1016/j.chroma.2013.10.050

    Article  CAS  Google Scholar 

  50. Carvalho P, Rodrigues P (2009) Organochlorine pesticides levels in Portuguese coastal areas. Chemosphere 75:595–600. doi:10.1016/j.chemosphere.2009.01.060

    Article  CAS  Google Scholar 

  51. Carvalho PN, Rodrigues PNR, Alves F et al (2008) An expeditious method for the determination of organochlorine pesticides residues in estuarine sediments using microwave assisted pre-extraction and automated headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry. Talanta 76:1124–1129. doi:10.1016/j.talanta.2008.05.035

    Article  CAS  Google Scholar 

  52. Montes R, Ramil M, Rodriguez I (2006) Rapid screening of polychlorinated biphenyls in sediments using non-equilibrium solid-phase microextraction and fast gas chromatography with electron-capture detection. J Chromatogr A 1124:43–50. doi:10.1016/j.chroma.2006.04.047

    Article  CAS  Google Scholar 

  53. Barri T, Bergstr S, Hussen A et al (2006) Extracting syringe for determination of organochlorine pesticides in leachate water and soil-water slurry: a novel technology for environmental analysis. J Chromatogr A 1111:11–20. doi:10.1016/j.chroma.2006.01.097

    Article  CAS  Google Scholar 

  54. Droge STJ, Hermens JLM (2007) Nonlinear sorption of three alcohol ethoxylates to marine sediment: a combined Langmuir and linear sorption process. Environ Sci Technol 41:3192–3198. doi:10.1021/es062608z

    Article  CAS  Google Scholar 

  55. Bonansea RI, Amé MV, Wunderlin DA (2013) Determination of priority pesticides in water samples combining SPE and SPME coupled to GC-MS. A case study: Suquía River basin (Argentina). Chemosphere 90:1860–1869. doi:10.1016/j.chemosphere.2012.10.007

    Article  CAS  Google Scholar 

  56. Monteil-Rivera F, Beaulieu C, Hawari J (2005) Use of solid-phase microextraction/gas chromatography—electron capture detection for the determination of energetic chemicals in marine samples. J Chromatogr A 1066:177–187. doi:10.1016/j.chroma.2005.01.049

    Article  CAS  Google Scholar 

  57. Santos B, Simonet BM, Ríos A, Valcárcel M (2007) On-line coupling of solid-phase microextraction to commercial CE-MS equipment. Electrophoresis 28:1312–1318. doi:10.1002/elps.200600429

    Article  CAS  Google Scholar 

  58. Li X, Zeng Z, Xu Y (2006) A solid-phase microextraction fiber coated with diglycidyloxycalix 4]arene yields very high extraction selectivity and sensitivity during the analysis of chlorobenzenes in soil. Anal Bioanal Chem 384:1428–1437. doi:10.1007/s00216-005-0281-5

    Article  CAS  Google Scholar 

  59. Liu M, Zeng Z, Fang H (2005) Preparation and application of the sol–gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil. J Chromatogr A 1076:16–26. doi:10.1016/j.chroma.2005.04.025

    Article  CAS  Google Scholar 

  60. Mohammadi A, Ameli A, Alizadeh N (2009) Headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry for the simultaneous determination of atrazine and ametryn in soil and water samples. Talanta 78:1107–1114. doi:10.1016/j.talanta.2009.01.025

    Article  CAS  Google Scholar 

  61. Farhadi K, Bochani S, Hatami M et al (2014) Gas chromatographic detection of some nitro explosive compounds in soil samples after solid-phase microextraction with carbon ceramic copper nanoparticle fibers. J Sep Sci 37:1578–1584. doi:10.1002/jssc.201400144

    Article  CAS  Google Scholar 

  62. Amanzadeh H, Yamini Y, Moradi M (2015) Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples. Anal Chim Acta 884:52–60. doi:10.1016/j.aca.2015.05.018

    Article  CAS  Google Scholar 

  63. Mayer P, Vaes WHJ, Wijnker F et al (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183. doi:10.1021/es001179g

    Article  CAS  Google Scholar 

  64. Chen X, Li H, You J (2015) Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: the role of bioavailability and enzymatic activities. Environ Pollut 207:138–144. doi:10.1016/j.envpol.2015.09.012

    Article  CAS  Google Scholar 

  65. Muijs B, Jonker MTO (2012) Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms? Environ Sci Technol 46:937–944. doi:10.1021/es202951w

    Article  CAS  Google Scholar 

  66. Conder JM, La Point TW, Lotufo GR, Steevens JA (2003) Nondestructive, minimal-disturbance, direct-burial solid-phase microextraction fiber technique for measuring TNT in sediment. Environ Sci Technol 37:1625–1632. doi:10.1021/es0260770

    Article  CAS  Google Scholar 

  67. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. doi:10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4

  68. Prieto A, Zuloaga O, Usobiaga A (2008) Use of experimental design in the optimisation of stir bar sorptive extraction followed by thermal desorption for the determination of brominated flame retardants in water. Anal Bioanal Chem 390:739–748. doi:10.1007/s00216-007-1712-2

    Article  CAS  Google Scholar 

  69. Sánchez-Avila J, Quintana J, Ventura F et al (2010) Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: an effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing directives. Mar Pollut Bull 60:103–112. doi:10.1016/j.marpolbul.2009.08.028

    Article  Google Scholar 

  70. Ochiai N, Ieda T, Sasamoto K et al (2011) Stir bar sorptive extraction and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry for ultra-trace analysis of organochlorine pesticides in river water. J Chromatogr A 1218:6851–6860. doi:10.1016/j.chroma.2011.08.027

    Article  CAS  Google Scholar 

  71. Serôdio P, Nogueira JM (2004) Multi-residue screening of endocrine disrupters chemicals in water samples by stir bar sorptive extraction-liquid desorption-capillary gas chromatography—mass spectrometry detection. Anal Chim Acta 517:21–32. doi:10.1016/j.aca.2004.04.045

    Article  Google Scholar 

  72. Chary NS, Herrera S, Gómez MJ, Fernández-Alba AR (2012) Parts per trillion level determination of endocrine-disrupting chlorinated compounds in river water and wastewater effluent by stir-bar-sorptive extraction followed by gas chromatography-triple quadrupole mass spectrometry. Anal Bioanal Chem 404:1993–2006. doi:10.1007/s00216-012-6251-9

    Article  CAS  Google Scholar 

  73. Llorca-Pórcel J, Martínez-Parreño M, Martínez-Soriano E, Valor I (2009) Analysis of chlorophenols, bisphenol-A, 4-tert-octylphenol and 4-nonylphenols in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction with in situ derivatisation. J Chromatogr A 1216:5955–5961. doi:10.1016/j.chroma.2009.06.043

    Article  Google Scholar 

  74. Rodil R, Popp P (2006) Development of pressurized subcritical water extraction combined with stir bar sorptive extraction for the analysis of organochlorine pesticides and chlorobenzenes in soils. J Chromatogr A 1124:82–90. doi:10.1016/j.chroma.2006.05.028

    Article  CAS  Google Scholar 

  75. Wilcockson JB, Gobas FA (2001) Thin-film solid-phase extraction to measure fugacities of organic chemicals with low volatility in biological samples. Environ Sci Technol 35:1425–1431

    Article  CAS  Google Scholar 

  76. Reichenberg F, Smedes F, Jönsson J-A, Mayer P (2008) Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem Cent J 2:8. doi:10.1186/1752-153X-2-8

    Article  Google Scholar 

  77. Jahnke A, Mayer P, McLachlan MS (2012) Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in baltic sea sediment. Environ Sci Technol 46:10114–10122. doi:10.1021/es302330v

    Article  CAS  Google Scholar 

  78. Cui X, Mayer P, Gan J (2013) Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations. Environ Pollut 172:223–234. doi:10.1016/j.envpol.2012.09.013

    Article  CAS  Google Scholar 

  79. Zhu F, Ruan W, He M et al (2009) Application of solid-phase microextraction for the determination of organophosphorus pesticides in textiles by gas chromatography with mass spectrometry. Anal Chim Acta 650:202–206. doi:10.1016/j.aca.2009.07.050

    Article  CAS  Google Scholar 

  80. Zuliani T, Lespes G, Milacic R et al (2006) Influence of the soil matrices on the analytical performance of headspace solid-phase microextraction for organotin analysis by gas chromatography-pulsed flame photometric detection. J Chromatogr A 1132:234–240. doi:10.1016/j.chroma.2006.07.054

    Article  CAS  Google Scholar 

  81. Drescher SR, Brown SD (2006) Solid phase microextraction-gas chromatographic-mass spectrometric determination of nitrous oxide evolution to measure denitrification in estuarine soils and sediments. J Chromatogr A 1133:300–304. doi:10.1016/j.chroma.2006.08.056

    Article  CAS  Google Scholar 

  82. De Cesare F, Pantalei S, Zampetti E, Macagnano A (2008) Electronic nose and SPME techniques to monitor phenanthrene biodegradation in soil. Sens Actuat B Chem 131:63–70. doi:10.1016/j.snb.2007.12.012

    Article  Google Scholar 

  83. Styrishave B, Mortensen M, Krogh PH et al (2008) Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, Folsomia candida, under various soil conditions. Environ Sci Technol 42:1332–1336

    Article  CAS  Google Scholar 

  84. Zuazagoitia D, Millán E, Garcia-Arrona R (2009) Comparison of two extraction methods for the determination of polycyclic aromatic hydrocarbons in surface soils using headspace SPME with GC-FID. J Chromatogr Sci 47:97–102

    Article  CAS  Google Scholar 

  85. Tölgyessy P, Vrana B, Šilhárová K (2012) An improved method for determination of polychlorinated biphenyls and polybrominated diphenyl ethers in sediment by ultrasonic solvent extraction followed by stir bar sorptive extraction coupled to TD–GC–MS. Chromatographia 76:177–185. doi:10.1007/s10337-012-2364-8

    Article  Google Scholar 

  86. Zhang M, Jackson GP, Kruse NA et al (2014) Determination of aroclor 1260 in soil samples by gas chromatography with mass spectrometry with solid-phase microextraction. J Sep Sci 37:2751–2756. doi:10.1002/jssc.201400102

    Article  CAS  Google Scholar 

  87. Zhuang GC, Lin YS, Elvert M et al (2014) Gas chromatographic analysis of methanol and ethanol in marine sediment pore waters: validation and implementation of three pretreatment techniques. Mar Chem 160:82–90. doi:10.1016/j.marchem.2014.01.011

    Article  CAS  Google Scholar 

  88. Saraji M, Mehrafza N (2015) Polysiloxane coated steel fibers for solid-phase microextraction of chlorobenzenes. Microchim Acta 182:841–848. doi:10.1007/s00604-014-1395-2

    Article  CAS  Google Scholar 

  89. Yiantzi E, Kalogerakis N, Psillakis E (2015) Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples. Anal Chim Acta 890:108–116. doi:10.1016/j.aca.2015.05.047

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the projects of NNSFC (Grants 21407184, 21225731, 21377172, and 21477166) and the NSF of Guangdong Province (Grant S2013030013474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangfeng Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Jiang, R., Ouyang, G. (2017). Application of Solid-Phase Microextraction in Soil and Sediment Sampling. In: Ouyang, G., Jiang, R. (eds) Solid Phase Microextraction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53598-1_6

Download citation

Publish with us

Policies and ethics