Skip to main content

Development of Novel Solid-Phase Microextraction Fibers

  • Chapter
  • First Online:

Abstract

The basic principles for the preparation of SPME fibers with satisfying selectivity, sensitivity, loading capacities and stabilities are summarized here in terms of the physicochemical properties of the coating materials and the supporting substrates of SPME fibers. While the main part of this chapter focuses on the advances in developing the most widely used coating materials, including ionic liquids, polymeric ionic liquids, carbonaceous materials, molecularly imprinted polymers, metal-organic frameworks, metals and metal oxides, conductive polymers, modified silica, as well as their composites, into SPME fibers. Meanwhile, the applications of novel SPME fibers in analyzing diverse analytes in different sample matrices are briefly reviewed, including the emerging applications of SPME in the extraction of bioactive compounds in living animals and plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vuckovic D, de Lannoy I, Gien B et al (2011) In vivo solid-phase microextraction: capturing the elusive portion of metabolome. Angew Chem Int Ed 50:5344–5348. doi:10.1002/anie.201006715

    Article  CAS  Google Scholar 

  2. Cudjoe E, Bojko B, de Lannoy I et al (2013) Solid-phase microextraction: a complementary in vivo sampling method to microdialysis. Angew Chem Int Ed 52:12124–12126. doi:10.1002/anie.201304538

    Article  CAS  Google Scholar 

  3. Musteata MF, Musteata ML, Pawliszyn J (2008) Fast in vivo microextraction: a new tool for clinical analysis. Clin Chem 52:708–715. doi:10.1373/clinchem.2005.064758

    Article  CAS  Google Scholar 

  4. Xu J, Luo J, Ruan J et al (2014) In vivo tracing uptake and elimination of organic pesticides in fish muscle. Environ Sci Technol 48:8012–8020. doi:10.1021/es5009032

    Article  CAS  Google Scholar 

  5. Souza-Silva ÉA, Gionfriddo E, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. Trends Anal Chem 71:236–248. doi:10.1016/j.trac.2015.04.018

    Article  CAS  Google Scholar 

  6. Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111:2784–2814. doi:10.1021/cr100203t

    Article  CAS  Google Scholar 

  7. Xu J, Zheng J, Tian J (2013) New materials in solid-phase microextraction. Trends Anal Chem 47:68–83. doi:10.1016/j.trac.2013.02.012

    Article  CAS  Google Scholar 

  8. Spietelun A, Pilarczyk M, Kloskowski A et al (2010) Current trends in solid-phase microextraction (SPME) fibre coatings. Chem Soc Rev 39:4524–4537. doi:10.1039/C003335A

    Article  CAS  Google Scholar 

  9. Gómez-Ríos GA, Pawliszyn J (2014) Development of coated blade spray ionization mass spectrometry for the quantitation of target analytes present in complex matrices. Angew Chem Int Ed 53:14503–14507. doi:10.1002/anie.201407057

    Article  CAS  Google Scholar 

  10. Gómez-Ríos GA, Pawliszyn J (2014) Solid phase microextraction (SPME)-transmission mode (TM) pushes down detection limits in direct analysis in real time (DART). Chem Commun 50:12937–12940. doi:10.1039/C4CC05301J

    Article  CAS  Google Scholar 

  11. Vuckovic D (2013) High-throughput solid-phase microextraction in multi-well-plate format. Trends Anal Chem 45:136–153. doi:10.1016/j.trac.2013.01.004

    Article  CAS  Google Scholar 

  12. Jiang R, Pawliszyn J (2012) Thin-film microextraction offers another geometry for solid-phase microextraction. Trends Anal Chem 39:245–253. doi:10.1016/j.trac.2012.07.005

    Article  CAS  Google Scholar 

  13. Wang X, Li X, Li Z et al (2014) Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Anal Chem 86:4739–4747. doi:10.1021/ac500382x

    Article  CAS  Google Scholar 

  14. Kataoka H, Inoue T, Saito K et al (2013) Analysis of heterocyclic amines in hair by on-line in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Chim Acta 786:54–60. doi:10.1016/j.aca.2013.05.007

    Article  CAS  Google Scholar 

  15. Chen Y, Sidisky LM (2014) A new interface for coupling solid phase microextraction with liquid chromatography. Anal Chim Acta 817:23–27. doi:10.1016/j.aca.2014.01.056

    Article  CAS  Google Scholar 

  16. Deng J, Yang Y, Wang X et al (2014) Strategies for coupling solid-phase microextraction with mass spectrometry. Trends Anal Chem 55:55–67. doi:10.1016/j.trac.2013.12.004

    Article  CAS  Google Scholar 

  17. Li L, Xia Z, Pawliszyn J (2015) Selective extraction and enrichment of glycoproteins based on boronate affinity SPME and determination by CIEF-WCID. Anal Chim Acta 886:83–90

    Article  CAS  Google Scholar 

  18. Xu J, Huang S, Wu R et al (2015) Bioinspired polydopamine sheathed nanofibers for high-efficient in vivo solid-phase microextraction of pharmaceuticals in fish muscle. Anal Chem 87:3453–3459. doi:10.1021/ac5048357

    Article  CAS  Google Scholar 

  19. He CT, Tian JY, Liu SY et al (2013) A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chem Sci 4:351–356. doi:10.1039/C2SC21181E

    Article  CAS  Google Scholar 

  20. Aziz-Zanjani MO, Mehdinia A (2013) Electrochemically prepared solid-phase microextraction coatings—a review. Anal Chim Acta 781:1–13. doi:10.1016/j.aca.2013.03.012

    Article  CAS  Google Scholar 

  21. Pang L, Liu J (2012) Development of a solid-phase microextraction fiber by chemical binding of polymeric ionic liquid on a silica coated stainless steel wire. J Chromatogr A 1230:8–14. doi:10.1016/j.chroma.2012.01.052

    Article  CAS  Google Scholar 

  22. Feng J, Sun M, Xu L et al (2011) Preparation of a polymeric ionic liquid-coated solid-phase microextraction fiber by surface radical chain-transfer polymerization with stainless steel wire as support. J Chromatogr A 1218:7758–7764. doi:10.1016/j.chroma.2011.08.076

    Article  CAS  Google Scholar 

  23. Feng J, Sun M, Liu H et al (2010) Au nanoparticles as a novel coating for solid-phase microextraction. J Chromatogr A 1217:8079–8086. doi:10.1016/j.chroma.2010.10.089

    Article  CAS  Google Scholar 

  24. Liu H, Ji L, Li J et al (2011) Magnetron sputtering Si interlayer: a protocol to prepare solid phase microextraction coatings on metal-based fiber. J Chromatogr A 1218:2835–2840. doi:10.1016/j.chroma.2011.03.047

    Article  CAS  Google Scholar 

  25. Zhao T, Guan X, Tang W et al (2015) Preparation of temperature sensitive molecularly imprinted polymer for solid-phase microextraction coatings on stainless steel fiber to measure ofloxacin. Anal Chim Acta 853:668–675. doi:10.1016/j.aca.2014.10.019

    Article  CAS  Google Scholar 

  26. Zhang S, Du Z, Li G (2011) Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction. Anal Chem 83:7531–7541. doi:10.1021/ac201864f

    Article  CAS  Google Scholar 

  27. Minet I, Hevesi L, Azenha M et al (2010) Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction. J Chromatogr A 1217:2758–2767. doi:10.1016/j.chroma.2010.02.030

    Article  CAS  Google Scholar 

  28. Bagheri H, Ayazi Z, Sistani H (2011) Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber. Microchim Acta 174:295–301. doi:10.1007/s00604-011-0621-4

    Article  CAS  Google Scholar 

  29. Budziak D, Martendal E, Carasek E et al (2007) Application of NiTi alloy coated with ZrO2 as a new fiber for solid-phase microextraction for determination of halophenols in water samples. Anal Chim Acta 598:254–260. doi:10.1016/j.aca.2007.07.061

    Article  CAS  Google Scholar 

  30. Mei M, Huang X, Yuan D (2014) Multiple monolithic fiber solid-phase microextraction: a new extraction approach for aqueous samples. J Chromatogr A 1345:29–36. doi:10.1016/j.chroma.2014.04.029

    Article  CAS  Google Scholar 

  31. Liu Q, Cheng M, Long Y et al (2014) Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction. J Chromatogr A 1325:1–7. doi:10.1016/j.chroma.2013.11.051

    Article  CAS  Google Scholar 

  32. Souza-Silva ÉA, Pawliszyn J (2012) Optimization of fiber coating structure enables direct immersion solid phase microextraction and high-throughput determination of complex samples. Anal Chem 84:6933–6938. doi:10.1021/ac301305u

    Article  CAS  Google Scholar 

  33. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. doi:10.1038/nmat2448

    Article  CAS  Google Scholar 

  34. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580. doi:10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  35. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16. doi:10.1016/j.aca.2009.12.007

    Article  CAS  Google Scholar 

  36. Liu J, Li N, Jiang G et al (2005) Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography–flame ionization detection. J Chromatogr A 1066:27–32. doi:10.1016/j.chroma.2005.01.024

    Article  CAS  Google Scholar 

  37. Hsieh YN, Huang PC, Sun IW et al (2006) Nafion membrane-supported ionic liquid–solid phase microextraction for analyzing ultra trace PAHs in water samples. Anal Chim Acta 557:321–328. doi:10.1016/j.aca.2005.10.019

    Article  CAS  Google Scholar 

  38. Huang KP, Wang GR, Huang BY et al (2009) Preparation and application of ionic liquid-coated fused-silica capillary fibers for solid-phase microextraction. Anal Chim Acta 645:42–47. doi:10.1016/j.aca.2009.04.037

    Article  CAS  Google Scholar 

  39. Cui M, Qiu J, Li Z et al (2015) An etched stainless steel wire/ionic liquid–solid phase microextraction technique for the determination of alkylphenols in river water. Talanta 132:564–571. doi:10.1016/j.talanta.2014.09.012

    Article  CAS  Google Scholar 

  40. Ho TT, Chen CY, Li ZG et al (2012) Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography–mass spectrometry. Anal Chim Acta 712:72–77. doi:10.1016/j.aca.2011.11.025

    Article  CAS  Google Scholar 

  41. He Y, Pohl J, Engel R et al (2009) Preparation of ionic liquid based solid-phase microextraction fiber and its application to forensic determination of methamphetamine and amphetamine in human urine. J Chromatogr A 1216:4824–4830. doi:10.1016/j.chroma.2009.04.028

    Article  CAS  Google Scholar 

  42. Carda-Broch S, Ruiz-Angel MJ, Armstrong DW et al (2010) Ionic liquid based headspace solid-phase microextraction–gas chromatography for the determination of volatile polar organic compounds. Sep Sci Technol 45:2322–2328. doi:10.1080/01496395.2010.497526

    Article  CAS  Google Scholar 

  43. Wanigasekara E, Perera S, Crank JA et al (2010) Bonded ionic liquid polymeric material for solid-phase microextraction GC analysis. Anal Bioanal Chem 396:511–524. doi:10.1007/s00216-009-3254-2

    Article  CAS  Google Scholar 

  44. Amini R, Rouhollahi A, Adibi M et al (2011) A novel reusable ionic liquid chemically bonded fused-silica fiber for headspace solid-phase microextraction/gas chromatography-flame ionization detection of methyl tert-butyl ether in a gasoline sample. J Chromatogr A 1218:130–136. doi:10.1016/j.chroma.2010.10.114

    Article  CAS  Google Scholar 

  45. Liu M, Zhou X, Chen Y et al (2010) Innovative chemically bonded ionic liquids-based sol–gel coatings as highly porous, stable and selective stationary phases for solid phase microextraction. Anal Chim Acta 683:96–106. doi:10.1016/j.aca.2010.10.004

    Article  CAS  Google Scholar 

  46. Zhou X, Xie P, Wang J et al (2011) Preparation and characterization of novel crown ether functionalized ionic liquid-based solid-phase microextraction coatings by sol–gel technology. J Chromatogr A 1218:3571–3580. doi:10.1016/j.chroma.2011.03.048

    Article  CAS  Google Scholar 

  47. Zhou X, Shao X, Shu J et al (2012) Thermally stable ionic liquid-based sol–gel coating for ultrasonic extraction–solid-phase microextraction–gas chromatography determination of phthalate esters in agricultural plastic films. Talanta 89:129–135. doi:10.1016/j.talanta.2011.12.001

    Article  CAS  Google Scholar 

  48. Gao Z, Deng Y, Hu X et al (2013) Determination of organophosphate esters in water samples using an ionic liquid-based sol–gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector. J Chromatogr A 1300:141–150. doi:10.1016/j.chroma.2013.02.089

    Article  CAS  Google Scholar 

  49. Shu J, Xie P, Lin D et al (2014) Two highly stable and selective solid phase microextraction fibers coated with crown ether functionalized ionic liquids by different sol–gel reaction approaches. Anal Chim Acta 806:152–164. doi:10.1016/j.aca.2013.11.006

    Article  CAS  Google Scholar 

  50. Shu J, Li C, Liu M et al (2012) Role of counteranions in sol–gel-derived alkoxyl-functionalized ionic-liquid-based organic-inorganic hybrid coatings for SPME. Chromatographia 75:1421–1433. doi:10.1007/s10337-012-2323-4

    Article  CAS  Google Scholar 

  51. Gao Z, Li W, Liu B et al (2011) Nano-structured polyaniline-ionic liquid composite film coated steel wire for headspace solid-phase microextraction of organochlorine pesticides in water. J Chromatogr A 1218:6285–6291. doi:10.1016/j.chroma.2011.07.041

    Article  CAS  Google Scholar 

  52. Zhao F, Wang M, Ma Y et al (2011) Electrochemical preparation of polyaniline–ionic liquid based solid phase microextraction fiber and its application in the determination of benzene derivatives. J Chromatogr A 1218:387–391. doi:10.1016/j.chroma.2010.12.017

    Article  CAS  Google Scholar 

  53. Abolghasemi MM, Karimi B, Yousefi V (2013) Periodic mesoporous organosilica with ionic liquid framework as a novel fiber coating for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chim Acta 804:280–286. doi:10.1016/j.aca.2013.10.022

    Article  CAS  Google Scholar 

  54. Ebrahimi M, Es'haghi Z, Samadi F et al (2011) Ionic liquid mediated sol–gel sorbents for hollow fiber solid-phase microextraction of pesticide residues in water and hair samples. J Chromatogr A 1218:8313–8321. doi:10.1016/j.chroma.2011.09.058

  55. Sarafraz-Yazdi A, Vatani H (2013) A solid phase microextraction coating based on ionic liquid sol–gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector. J Chromatogr A 1300:104–111. doi:10.1016/j.chroma.2013.03.039

    Article  CAS  Google Scholar 

  56. Pena-Pereira F, Marcinkowski Ł, Kloskowski A et al (2014) Silica-based ionogels: nanoconfined ionic liquid-rich fibers for headspace solid-phase microextraction coupled with gas chromatography-barrier discharge ionization detection. Anal Chem 86:11640–11648. doi:10.1021/ac502666f

    Article  CAS  Google Scholar 

  57. Zhao F, Meng Y, Anderson JL (2008) Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction. J Chromatogr A 1208:1–9. doi:10.1016/j.chroma.2008.08.071

    Article  CAS  Google Scholar 

  58. Zhao Q, Wajert JC, Anderson JL (2010) Polymeric ionic liquids as CO2 selective sorbent coatings for solid-phase microextraction. Anal Chem 82:707–713. doi:10.1021/ac902438k

    Article  CAS  Google Scholar 

  59. Zhao Q, Anderson JL (2010) Selective extraction of CO2 from simulated flue gas using polymeric ionic liquid sorbent coatings in solid-phase microextraction gas chromatography. J Chromatogr A 1217:4517–4522. doi:10.1016/j.chroma.2010.04.080

    Article  CAS  Google Scholar 

  60. López-Darias J, Pino V, Anderson JL et al (2010) Determination of water pollutants by direct-immersion solid-phase microextraction using polymeric ionic liquid coatings. J Chromatogr A 1217:1236–1243. doi:10.1016/j.chroma.2009.12.041

    Article  CAS  Google Scholar 

  61. López-Darias J, Anderson JL, Pino V et al (2011) Developing qualitative extraction profiles of coffee aromas utilizing polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction gas chromatography–mass spectrometry. Anal Bioanal Chem 401:2965–2976. doi:10.1007/s00216-011-5394-4

    Article  CAS  Google Scholar 

  62. Meng Y, Anderson JL (2010) Tuning the selectivity of polymeric ionic liquid sorbent coatings for the extraction of polycyclic aromatic hydrocarbons using solid-phase microextraction. J Chromatogr A 1217:6143–6152. doi:10.1016/j.chroma.2010.08.007

    Article  CAS  Google Scholar 

  63. Meng Y, Pino V, Anderson JL (2011) Role of counteranions in polymeric ionic liquid-based solid-phase microextraction coatings for the selective extraction of polar compounds. Anal Chim Acta 687:141–149. doi:10.1016/j.aca.2010.11.046

    Article  CAS  Google Scholar 

  64. Ho TD, Yu H, Cole WTS et al (2012) Ultraviolet photoinitiated on-fiber copolymerization of ionic liquid sorbent coatings for headspace and direct immersion solid-phase microextraction. Anal Chem 84:9520–9528. doi:10.1021/ac302316c

    CAS  Google Scholar 

  65. Feng J, Sun M, Wang X et al (2012) Ionic liquids-based crosslinked copolymer sorbents for headspace solid-phase microextraction of polar alcohols. J Chromatogr A 1245:32–38. doi:10.1016/j.chroma.2012.05.026

    Article  CAS  Google Scholar 

  66. Feng J, Sun M, Li L et al (2014) Multiwalled carbon nanotubes-doped polymeric ionic liquids coating for multiple headspace solid-phase microextraction. Talanta 123:18–24. doi:10.1016/j.talanta.2014.01.030

    Article  CAS  Google Scholar 

  67. Feng J, Sun M, Xu L et al (2012) Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution. J Chromatogr A 1268:16–21. doi:10.1016/j.chroma.2012.10.037

    Article  CAS  Google Scholar 

  68. Jia J, Liang X, Wang L et al (2013) Nanoporous array anodic titanium-supported co-polymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds. J Chromatogr A 1320:1–9. doi:10.1016/j.chroma.2013.10.042

    Article  CAS  Google Scholar 

  69. Chen C, Liang X, Wang J et al (2014) Development of a polymeric ionic liquid coating for direct-immersion solid-phase microextraction using polyhedral oligomeric silsesquioxane as cross-linker. J Chromatogr A 1348:80–86. doi:10.1016/j.chroma.2014.04.098

    Article  CAS  Google Scholar 

  70. Ho TD, Toledo BR, Hantao LW et al (2014) Chemical immobilization of crosslinked polymeric ionic liquids on nitinol wires produces highly robust sorbent coatings for solid-phase microextraction. Anal Chim Acta 843:18–26. doi:10.1016/j.aca.2014.07.034

    Article  CAS  Google Scholar 

  71. Toledo BR, Hantao LW, Ho TD et al (2014) A chemometric approach toward the detection and quantification of coffee adulteration by solid-phase microextraction using polymeric ionic liquid sorbent coatings. J Chromatogr A 1346:1–7. doi:10.1016/j.chroma.2014.04.035

    Article  CAS  Google Scholar 

  72. Amini R, Rouhollahi A, Adibi M et al (2011) A new disposable ionic liquid based coating for headspace solid-phase microextraction of methyl tert-butyl ether in a gasoline sample followed by gas chromatography–flame ionization detection. Talanta 84:1–6. doi:10.1016/j.talanta.2010.10.043

    Article  CAS  Google Scholar 

  73. López-Darias J, Pino V, Meng Y et al (2010) Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography–flame ionization detection. J Chromatogr A 1217:7189–7197. doi:10.1016/j.chroma.2010.09.016

    Article  CAS  Google Scholar 

  74. Chen J, Zou J, Zeng J et al (2010) Preparation and evaluation of graphene-coated solid-phase microextraction fiber. Anal Chim Acta 678:44–49. doi:10.1016/j.aca.2010.08.008

    Article  CAS  Google Scholar 

  75. Ponnusamy VK, Jen JF (2011) A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection. J Chromatogr A 1218:6861–6868. doi:10.1016/j.chroma.2011.08.019

    Article  CAS  Google Scholar 

  76. Wang Y, Wang X, Guo Z et al (2014) Ultrafast coating procedure for graphene on solid-phase microextraction fibers. Talanta 119:517–523. doi:10.1016/j.talanta.2013.11.047

    Article  CAS  Google Scholar 

  77. Zhang H, Lee HK (2011) Plunger-in-needle solid-phase microextraction with graphene-based sol–gel coating as sorbent for determination of polybrominated diphenyl ethers. J Chromatogr A 1218:4509–4516. doi:10.1016/j.chroma.2011.05.016

    Article  CAS  Google Scholar 

  78. Ke Y, Zhu F, Zeng F et al (2013) Preparation of graphene-coated solid-phase microextraction fiber and its application on organochlorine pesticides determination. J Chromatogr A 1300:187–192. doi:10.1016/j.chroma.2012.11.072

    Article  CAS  Google Scholar 

  79. Zhang G, Li Z, Zang X et al (2014) Solid-phase microextraction with a graphene-composite-coated fiber coupled with GC for the determination of some halogenated aromatic hydrocarbons in water samples. J Sep Sci 37:440–446. doi:10.1002/jssc.201301183

    Article  CAS  Google Scholar 

  80. Zou J, Song X, Ji J et al (2011) Polypyrrole/graphene composite-coated fiber for the solid-phase microextraction of phenols. J Sep Sci 34:2765–2772. doi:10.1002/jssc.201100303

    Article  CAS  Google Scholar 

  81. Abedi H, Ebrahimzadeh H, Ghasemi JB (2015) Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchim Acta 182:633–641. doi:10.1007/s00604-014-1367-6

    Article  CAS  Google Scholar 

  82. Zhang B, Li H, Zheng X et al (2014) Preparation of durable graphene-bonded titanium fibers for efficient microextraction of phthalates from aqueous matrices and analysis with gas chromatography–mass spectrometry. J Chromatogr A 1370:9–16. doi:10.1016/j.chroma.2014.10.034

    Article  CAS  Google Scholar 

  83. Sun M, Feng J, Bu Y et al (2015) Graphene coating bonded onto stainless steel wire as a solid-phase microextraction fiber. Talanta 134:200–205. doi:10.1016/j.talanta.2014.11.005

    Article  CAS  Google Scholar 

  84. Banitaba MH, Davarani SSH, Ahmar H et al (2014) Application of a new fiber coating based on electrochemically reduced graphene oxide for the cold-fiber headspace solid-phase microextraction of tricyclic antidepressants. J Sep Sci 37:1162–1169. doi:10.1002/jssc.201301369

    Article  CAS  Google Scholar 

  85. Luo Y, Yuan B, Yu Q et al (2012) Substrateless graphene fiber: a sorbent for solid-phase microextraction. J Chromatogr A 1268:9–15. doi:10.1016/j.chroma.2012.10.035

    Article  CAS  Google Scholar 

  86. Zhang S, Du Z, Li G (2012) Graphene-supported zinc oxide solid-phase microextraction coating with enhanced selectivity and sensitivity for the determination of sulfur volatiles in Allium species. J Chromatogr A 1260:1–8. doi:10.1016/j.chroma.2012.08.045

    Article  CAS  Google Scholar 

  87. Li Z, Ma R, Bai S et al (2014) A solid phase microextraction fiber coated with graphene–poly(ethylene glycol) composite for the extraction of volatile aromatic compounds from water samples. Talanta 119:498–504. doi:10.1016/j.talanta.2013.11.068

    Article  CAS  Google Scholar 

  88. Banitaba MH, Davarani SSH, Movahed SK (2014) Comparison of direct, headspace and headspace cold fiber modes in solid phase microextraction of polycyclic aromatic hydrocarbons by a new coating based on poly(3,4-ethylenedioxythiophene)/graphene oxide composite. J Chromatogr A 1325:23–30. doi:10.1016/j.chroma.2013.11.056

    Article  CAS  Google Scholar 

  89. Zhang C, Zhang Z, Li G (2014) Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes. J Chromatogr A 1346:8–15. doi:10.1016/j.chroma.2014.04.043

    Article  CAS  Google Scholar 

  90. Jafari M, Ebrahimzadeh H, Banitaba MH et al (2014) Solid-phase microextraction of phthalate esters by a new coating based on a thermally stable polypyrrole/graphene oxide composite. J Sep Sci 37:3142–3149. doi:10.1002/jssc.201400664

    Article  CAS  Google Scholar 

  91. Wang JX, Jiang DQ, Gu ZY et al (2006) Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137:8–14. doi:10.1016/j.chroma.2006.10.003

    Article  CAS  Google Scholar 

  92. Liu X, Ji Y, Zhang Y et al (2007) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A 1165:10–17. doi:10.1016/j.chroma.2007.07.057

    Article  CAS  Google Scholar 

  93. Lü J, Liu J, Wei Y et al (2007) Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. J Sep Sci 30:2136–2143. doi:10.1002/jssc.200700083

    Google Scholar 

  94. Rastkari N, Ahmadkhaniha R, Samadi N et al (2010) Single-walled carbon nanotubes as solid-phase microextraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater. Anal Chim Acta 662:90–96. doi:10.1016/j.aca.2009.12.035

    Article  CAS  Google Scholar 

  95. Wu F, Lu W, Chen J et al (2010) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. Talanta 82:1038–1043. doi:10.1016/j.chroma.2007.07.057

    Article  CAS  Google Scholar 

  96. Chen W, Zeng J, Chen J et al (2009) High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating. J Chromatogr A 1216:9143–9148. doi:10.1016/j.chroma.2009.07.025

    Article  CAS  Google Scholar 

  97. Zeng J, Chen J, Song X et al (2010) An electrochemically enhanced solid-phase microextraction approach based on a multi-walled carbon nanotubes/Nafion composite coating. J Chromatogr A 1217:1735–1741. doi:10.1016/j.chroma.2010.01.034

    Article  CAS  Google Scholar 

  98. Kueseng P, Pawliszyn J (2013) Carboxylated multiwalled carbon nanotubes/polydimethylsiloxane, a new coating for 96-blade solid-phase microextraction for determination of phenolic compounds in water. J Chromatogr A 1317:199–202. doi:10.1016/j.chroma.2013.08.038

    Article  CAS  Google Scholar 

  99. Matin AA, Biparva P, Gheshlaghi M (2013) Environmental monitoring of complex hydrocarbon mixtures in water and soil samples after solid phase microextraction using PVC/MWCNTs nanocomposite fiber. Chemosphere 93:1920–1926. doi:10.1016/j.chemosphere.2013.06.072

    Article  CAS  Google Scholar 

  100. Zhang W, Sun Y, Wu C et al (2009) Polymer-functionalized single-walled carbon nanotubes as a novel sol–gel solid-phase micro-extraction coated fiber for determination of poly-brominated diphenyl ethers in water samples with gas chromatography–electron capture detection. Anal Chem 81:2912–2920. doi:10.1021/ac802123s

    Article  CAS  Google Scholar 

  101. Jiang R, Zhu F, Luan T et al (2009) Carbon nanotube-coated solid-phase microextraction metal fiber based on sol–gel technique. J Chromatogr A 1216:4641–4647. doi:10.1016/j.chroma.2009.03.076

    Article  CAS  Google Scholar 

  102. Sarafraz-Yazdi A, Abbasian M, Amiri A (2012) Determination of furan in food samples using two solid phase microextraction fibers based on sol–gel technique with gas chromatography–flame ionisation detector. Food Chem 131:698–704. doi:10.1016/j.foodchem.2011.09.019

    Article  CAS  Google Scholar 

  103. Sarafraz-Yazdi A, Amiri A, Rounaghi G et al (2011) A novel solid-phase microextraction using coated fiber based sol–gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flam ionization detector. J Chromatogr A 1218:5757–5764. doi:10.1016/j.chroma.2011.06.099

    Article  CAS  Google Scholar 

  104. Li Q, Wang X, Yuan D (2009) Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J Chromatogr A 1216:1305–1311. doi:10.1016/j.chroma.2008.12.082

    Article  CAS  Google Scholar 

  105. Li Q, Ding Y, Yuan D (2011) Electrosorption-enhanced solid-phase microextraction of trace anions using a platinum plate coated with single-walled carbon nanotubes. Talanta 85:1148–1153. doi:10.1016/j.talanta.2011.05.042

    Article  CAS  Google Scholar 

  106. Du W, Zhao F, Zeng B (2009) Novel multiwalled carbon nanotubes–polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds. J Chromatogr A 1216:3751–3757. doi:10.1016/j.chroma.2009.03.013

    Article  CAS  Google Scholar 

  107. Asadollahzadeh H, Noroozian E, Maghsoudi S (2010) Solid-phase microextraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber. Anal Chim Acta 669:32–38. doi:10.1016/j.aca.2010.04.029

    Article  CAS  Google Scholar 

  108. Chen L, Chen W, Ma C et al (2011) Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids. Talanta 84:104–108. doi:10.1016/j.talanta.2010.12.027

    Article  CAS  Google Scholar 

  109. Behzadi M, Noroozian E, Mirzaei M (2013) A novel coating based on carbon nanotubes/poly-ortho-phenylenediamine composite for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Talanta 108:66–73. doi:10.1016/j.talanta.2013.02.040

    Article  CAS  Google Scholar 

  110. Liu H, Li J, Liu X et al (2009) A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction–gas chromatographic analysis of phenols in water samples. Talanta 78:929–935. doi:10.1016/j.talanta.2008.12.061

    Article  CAS  Google Scholar 

  111. Feng J, Sun M, Xu L et al (2011) Preparation of metal wire supported solid-phase microextraction fiber coated with multi-walled carbon nanotubes. J Sep Sci 34:2482–2488. doi:10.1002/jssc.201100375

    Article  CAS  Google Scholar 

  112. Song XY, Shi YP, Chen J (2013) Carbon nanotubes reinforced hollow fiber solid phase microextraction for the determination of strychnine and brucine in urine. Talanta 116:188–194. doi:10.1016/j.talanta.2013.05.025

    Article  CAS  Google Scholar 

  113. Song XY, Ha W, Chen J et al (2014) Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones. J Chromatogr A 1374:23–30. doi:10.1016/j.chroma.2014.11.029

    Article  CAS  Google Scholar 

  114. Zhao RS, Liu YL, Zhou JB et al (2013) Bamboo charcoal as a novel solid-phase microextraction coating material for enrichment and determination of eleven phthalate esters in environmental water samples. Anal Bioanal Chem 405:4993–4996. doi:10.1007/s00216-013-6865-6

    Article  CAS  Google Scholar 

  115. Sun M, Feng J, Qiu H et al (2013) A solid-phase microextraction fiber with carbon nanoparticles as sorbent material prepared by a simple flame-based preparation process. J Chromatogr A 1300:173–179. doi:10.1016/j.chroma.2013.04.061

    Article  CAS  Google Scholar 

  116. Lin Y, Wu L, Xu K et al (2015) In situ synthesis of porous carbons by using room-temperature, atmospheric-pressure dielectric barrier discharge plasma as high-performance adsorbents for solid-phase microextraction. Chem Eur J 21:13618–13624. doi:10.1002/chem.201500814

    Article  CAS  Google Scholar 

  117. Huang Z, Chua PE, Lee HK (2015) Carbonized polydopamine as coating for solid-phase microextraction of organochlorine pesticides. J Chromatogr A 1399:8–17. doi:10.1016/j.chroma.2015.04.028

    Article  CAS  Google Scholar 

  118. Whitcombe MJ, Rodriguez ME, Villar P et al (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111. doi:10.1021/ja00132a010

    Article  CAS  Google Scholar 

  119. Li MKY, Lei NY, Gong C et al (2009) An organically modified silicate molecularly imprinted solid-phase microextraction device for the determination of polybrominated diphenyl ethers. Anal Chim Acta 633:197–203. doi:10.1016/j.aca.2008.11.060

    Article  CAS  Google Scholar 

  120. Li JW, Wang YL, Yan S et al (2016) Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chem 192:260–267. doi:10.1016/j.foodchem.2015.07.018

    Article  CAS  Google Scholar 

  121. Huang J, Hu Y, Hu Y et al (2011) Development of metal complex imprinted solid-phase microextraction fiber for 2,2′-dipyridine recognition in aqueous medium. Talanta 83:1721–1729. doi:10.1016/j.talanta.2010.12.001

    Article  CAS  Google Scholar 

  122. Hu X, Fan Y, Zhang Y et al (2012) Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition–fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Anal Chim Acta 731:40–48. doi:10.1016/j.aca.2012.04.013

    Article  CAS  Google Scholar 

  123. Qiu L, Liu W, Huang M et al (2010) Preparation and application of solid-phase microextraction fiber based on molecularly imprinted polymer for determination of anabolic steroids in complicated samples. J Chromatogr A 1217:7461–7470. doi:10.1016/j.chroma.2010.08.056

    Article  CAS  Google Scholar 

  124. Hu Y, Wang Y, Chen X et al (2010) A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples. Talanta 80:2099–2105. doi:10.1016/j.talanta.2009.11.015

    Article  CAS  Google Scholar 

  125. Hu Y, Wang Y, Hu Y et al (2009) Liquid–liquid–solid microextraction based on membrane-protected molecularly imprinted polymer fiber for trace analysis of triazines in complex aqueous samples. J Chromatogr A 1216:8304–8311. doi:10.1016/j.chroma.2009.09.063

    Article  CAS  Google Scholar 

  126. Tan F, Zhao H, Li X et al (2009) Preparation and evaluation of molecularly imprinted solid-phase microextraction fibers for selective extraction of bisphenol A in complex samples. J Chromatogr A 1216:5647–5654. doi:10.1016/j.chroma.2009.06.007

    Article  CAS  Google Scholar 

  127. Hu X, Pan J, Hu Y et al (2009) Preparation and evaluation of propranolol molecularly imprinted solid-phase microextraction fiber for trace analysis of β-blockers in urine and plasma samples. J Chromatogr A 1216:190–197. doi:10.1016/j.chroma.2008.11.064

    Article  CAS  Google Scholar 

  128. Hu X, Pan J, Hu Y et al (2008) Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. J Chromatogr A 1188:97–107. doi:10.1016/j.chroma.2008.02.062

    Article  CAS  Google Scholar 

  129. Hu X, Hu Y, Li G (2007) Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. J Chromatogr A 1147:1–9. doi:10.1016/j.chroma.2007.02.037

    Article  CAS  Google Scholar 

  130. Hu Y, Song C, Li G (2012) Fiber-in-tube solid-phase microextraction with molecularly imprinted coating for sensitive analysis of antibiotic drugs by high performance liquid chromatography. J Chromatogr A 1263:21–27

    Article  CAS  Google Scholar 

  131. Prasad BB, Tiwari K, Singh M et al (2008) Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid. J Chromatogr A 1198–1199:59–66. doi:10.1016/j.chroma.2008.05.059

    Article  CAS  Google Scholar 

  132. Wang YL, Gao YL, Wang PP et al (2013) Sol–gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides. Talanta 115:920–927. doi:10.1016/j.talanta.2013.06.056

    Article  CAS  Google Scholar 

  133. Turiel E, Tadeo JL, Martin-Esteban A (2007) Molecularly imprinted polymeric fibers for solid-phase microextraction. Anal Chem 79:3099–3104. doi:10.1021/ac062387f

    Article  CAS  Google Scholar 

  134. Xu S, Zhang X, Sun Y et al (2013) Microwave-assisted preparation of monolithic molecularly imprinted polymeric fibers for solid phase microextraction. Analyst 138:2982–2987. doi:10.1039/C3AN00003F

    Article  CAS  Google Scholar 

  135. Zhang X, Xu S, Lim JM et al (2012) Molecularly imprinted solid phase microextraction fiber for trace analysis of catecholamines in urine and serum samples by capillary electrophoresis. Talanta 99:270–276. doi:10.1016/j.talanta.2012.05.050

    Article  CAS  Google Scholar 

  136. Deng DL, Zhang JY, Chen C et al (2012) Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. J Chromatogr A 1219:195–200. doi:10.1016/j.chroma.2011.11.016

    Article  CAS  Google Scholar 

  137. He J, Lv R, Zhan H et al (2010) Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample. Anal Chim Acta 674:53–58. doi:10.1016/j.aca.2010.06.018

    Article  CAS  Google Scholar 

  138. Djozan D, Ebrahimi B (2008) Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Anal Chim Acta 616:152–159. doi:10.1016/j.aca.2008.04.037

    Article  CAS  Google Scholar 

  139. Djozan D, Mahkam M, Ebrahimi B (2009) Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer: application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion. J Chromatogr A 1216:2211–2219. doi:10.1016/j.chroma.2008.12.101

    Article  CAS  Google Scholar 

  140. Barahona F, Turiel E, Martín-Esteban A (2011) Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole. Anal Chim Acta 694:83–89. doi:10.1016/j.aca.2011.03.052

    Article  CAS  Google Scholar 

  141. Hu X, Cai Q, Fan Y et al (2012) Molecularly imprinted polymer coated solid-phase microextraction fibers for determination of Sudan I–IV dyes in hot chili powder and poultry feed samples. J Chromatogr A 1219:39–46. doi:10.1016/j.chroma.2011.10.089

    Article  CAS  Google Scholar 

  142. Szultka M, Szeliga J, Jackowski M et al (2012) Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME–LC/MSn. Anal Bioanal Chem 403:785–796. doi:10.1007/s00216-012-5901-2

    Article  CAS  Google Scholar 

  143. Lan H, Gan N, Pan D et al (2014) An automated solid-phase microextraction method based on magnetic molecularly imprinted polymer as fiber coating for detection of trace estrogens in milk powder. J Chromatogr A 1331:10–18. doi:10.1016/j.chroma.2014.01.016

    Article  CAS  Google Scholar 

  144. Lan H, Gan N, Pan D et al (2014) Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples. J Chromatogr A 1365:35–44. doi:10.1016/j.chroma.2014.08.096

    Article  CAS  Google Scholar 

  145. Ye N, Gao T, Li J (2014) Hollow fiber-supported graphene oxide molecularly imprinted polymers for the determination of dopamine using HPLC-PDA. Anal Methods 6:7518–7524. doi:10.1039/C4AY01017E

    Article  CAS  Google Scholar 

  146. Golsefidia MA, Es'haghia Z, Sarafraz-Yazdic A (2012) Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber–solid phase microextraction of chlorogenic acid in medicinal plants. J Chromatogr A 1229:24–29. doi:10.1016/j.chroma.2012.01.019

  147. Gu ZY, Yang CX, Chang N et al (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. doi:10.1021/ar2002599

    Article  CAS  Google Scholar 

  148. Cui XY, Gu ZY, Jiang DQ et al (2009) In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777. doi:10.1021/ac901663x

    Article  CAS  Google Scholar 

  149. Chang N, Gu ZY, Wang HF et al (2011) Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal Chem 83:7094–7101. doi:10.1021/ac2014004

    Article  CAS  Google Scholar 

  150. Wu YY, Yang CX, Yan XP (2014) Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 1334:1–8. doi:10.1016/j.chroma.2014.01.079

    Article  CAS  Google Scholar 

  151. Shang HB, Yang CX, Yan XP (2014) Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J Chromatogr A 1357:165–171. doi:10.1016/j.chroma.2014.05.027

    Article  CAS  Google Scholar 

  152. Li QL, Wang X, Chen XF et al (2015) In situ hydrothermal growth of ytterbium-based metal-organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples. J Chromatogr A 1415:11–19. doi:10.1016/j.chroma.2015.08.036

    Article  CAS  Google Scholar 

  153. Li QL, Wang X, Liu YL et al (2014) Feasibility of metal-organic nanotubes [Cu33-O)(μ-OH)(triazolate)2]+-coated fibers for solid-phase microextraction of polychlorinated biphenyls in water samples. J Chromatogr A 1374:58–65. doi:10.1016/j.chroma.2014.11.058

    Article  CAS  Google Scholar 

  154. Xie L, Liu S, Han Z et al (2015) Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta 853:303–310. doi:10.1016/j.aca.2014.09.048

    Article  CAS  Google Scholar 

  155. Liu S, Zhou Y, Zheng J et al (2015) Isoreticular bio-MOF 100–102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism. Analyst 140:4384–4387. doi:10.1039/C5AN00775E

    Article  CAS  Google Scholar 

  156. Chen XF, Zang H, Wang X et al (2012) Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry. Analyst 137:5411–5419. doi:10.1039/C2AN35806A

    Article  CAS  Google Scholar 

  157. Li YA, Yang F, Liu ZC et al (2014) A porous Cd(II)-MOF-coated quartz fiber for solid-phase microextraction of BTEX. J Mater Chem A 2:13868–13872. doi:10.1039/C4TA01940G

    Article  CAS  Google Scholar 

  158. Zheng J, Li S, Wang Y et al (2014) In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers. Anal Chim Acta 829:22–27. doi:10.1016/j.aca.2014.04.039

    Article  CAS  Google Scholar 

  159. Zhang S, Du Z, Li G (2013) Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115:32–39. doi:10.1016/j.talanta.2013.04.029

    Article  CAS  Google Scholar 

  160. Zhang Z, Huang Y, Ding W et al (2014) Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene. Anal Chem 86:3533–3540. doi:10.1021/ac404240n

    Article  CAS  Google Scholar 

  161. Hu Y, Lian H, Zhou L et al (2015) In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides. Anal Chem 87:406–412. doi:10.1021/ac502146c

    Article  CAS  Google Scholar 

  162. Wang G, Lei Y, Song H (2015) Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Talanta 144:369–374. doi:10.1016/j.talanta.2015.06.058

    Article  CAS  Google Scholar 

  163. Zhang G, Zang X, Li Z et al (2014) Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples. Talanta 129:600–605. doi:10.1016/j.talanta.2014.06.013

    Article  CAS  Google Scholar 

  164. Zang X, Zhang G, Chang Q et al (2015) Metal organic framework MIL-101 coated fiber for headspace solid phase microextraction of volatile aromatic compounds. Anal Methods 7:918–923. doi:10.1039/C4AY02540G

    Article  CAS  Google Scholar 

  165. Li L, Xiang S, Cao S et al (2013) A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nat Commun 4:1774. doi:10.1038/ncomms2757

    Article  CAS  Google Scholar 

  166. Zhang J, Liu L, Liu H et al (2015) Highly porous aerogels based on imine chemistry: syntheses and sorption properties. J Mater Chem A 3:10990–10998. doi:10.1039/C5TA00557D

    Article  CAS  Google Scholar 

  167. Feng J, Sun M, Li J et al (2011) A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique. Anal Chim Acta 701:174–180. doi:10.1016/j.aca.2011.05.040

    Article  CAS  Google Scholar 

  168. Zhang Y, Yang Y, Li Y et al (2015) Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction. Anal Chim Acta 876:55–62. doi:10.1016/j.aca.2015.03.044

    Article  CAS  Google Scholar 

  169. Sun M, Feng J, Bu Y et al (2015) Palladium-coated stainless-steel wire as a solid-phase microextraction fiber. J Sep Sci 38:1584–1590. doi:10.1002/jssc.201401283

    Article  CAS  Google Scholar 

  170. Gong X, Zhao Y, Cai S et al (2014) Single cell analysis with probe ESI–mass spectrometry: detection of metabolites at cellular and subcellular levels. Anal Chem 86:3809–3816. doi:10.1021/ac500882e

    Article  CAS  Google Scholar 

  171. Xu HL, Li Y, Jiang DQ et al (2009) Hydrofluoric acid etched stainless steel wire for solid-phase microextraction. Anal Chem 81:4971–4977. doi:10.1021/ac900743s

    Article  CAS  Google Scholar 

  172. Zhang Y, Song W, Yang Y et al (2015) Self-assembly of mercaptoundecanol on cedar-like Au nanoparticle coated stainless steel fiber for selective solid-phase microextraction. Anal Methods 7:7680–7689. doi:10.1039/C5AY01184A

    Article  CAS  Google Scholar 

  173. Yang Y, Li Y, Liu H et al (2014) Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction. J. Chromatogr. A 1372:25–33. doi:10.1016/j.chroma.2014.10.095

    Article  CAS  Google Scholar 

  174. Liu C, Zhang X, Li L et al (2015) Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst 140:4668–4675. doi:10.1039/C5AN00590F

    Article  CAS  Google Scholar 

  175. Deng J, Yang Y, Xu M et al (2015) Surface-coated probe nanoelectrospray ionization mass spectrometry for analysis of target compounds in individual small organisms. Anal Chem 87:9923–9930. doi:10.1021/acs.analchem.5b03110

    Article  CAS  Google Scholar 

  176. Djozan D, Assadi Y, Haddadi SH (2001) Anodized aluminum wire as a solid-phase microextraction fiber. Anal Chem 73:4054–4058. doi:10.1021/ac0100188

    Article  CAS  Google Scholar 

  177. Zhang G, Zou L, Xu H (2015) Anodic alumina coating for extraction of volatile organic compounds in human exhaled breath vapor. Talanta 132:528–534. doi:10.1016/j.talanta.2014.09.035

    Article  CAS  Google Scholar 

  178. Gholivand MB, Piryaei M, Abolghasemi MM (2011) Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant. Anal Chim Acta 701:1–5. doi:10.1016/j.aca.2011.05.046

    Article  CAS  Google Scholar 

  179. Zhang Z, Ma Y, Wang Q et al (2013) Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples. J Chromatogr A 1290:27–35. doi:10.1016/j.chroma.2013.03.052

    Article  CAS  Google Scholar 

  180. Djozan D, Abdollahi L (2003) Anodized zinc wire as a solid-phase microextraction fiber. Chromatographia 57:799–804. doi:10.1007/BF02491768

    Article  CAS  Google Scholar 

  181. Li Y, Zhang M, Yang Y et al (2014) Electrochemical in situ fabrication of titanium dioxide-nanosheets on a titanium wire as a novel coating for selective solid-phase microextraction. J Chromatogr A 1358:60–67. doi:10.1016/j.chroma.2014.06.094

    Article  CAS  Google Scholar 

  182. Guo M, Song W, Wang T et al (2015) Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta 144:998–1006. doi:10.1016/j.talanta.2015.07.064

    Article  CAS  Google Scholar 

  183. Cao D, Lü J, Liu J et al (2008) In situ fabrication of nanostructured titania coating on the surface of titanium wire: a new approach for preparation of solid-phase microextraction fiber. Anal Chim Acta 611:56–61. doi:10.1016/j.aca.2008.01.067

    Article  CAS  Google Scholar 

  184. Song W, Zhang Y, Guo M et al (2015) Rapid electrochemical preparation of porous sponge-like zinc–zinc oxide coating deposited on an etched stainless steel fiber for selective determination of UV filters in environmental water samples. Anal Methods 7:6619–6628. doi:10.1039/C5AY01248A

    Article  CAS  Google Scholar 

  185. Ghasemia E, Farahani H (2012) Head space solid phase microextraction based on nano-structured lead dioxide: application to the speciation of volatile organoselenium in environmental and biological samples. J Chromatogr A 1258:16–20. doi:10.1016/j.chroma.2012.08.027

    Article  CAS  Google Scholar 

  186. Gholivand MB, Shamsipur M, Shamizadeh M et al (2014) Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions. Anal Chim Acta 822:30–36. doi:10.1016/j.aca.2014.02.032

    Article  CAS  Google Scholar 

  187. Ghasemia E, Sillanpää M (2014) Optimization of headspace solid phase microextraction based on nano-structured ZnO combined with gas chromatography–mass spectrometry for preconcentration and determination of ultra-traces of chlorobenzenes in environmental samples. Talanta 130:322–327. doi:10.1016/j.talanta.2014.06.030

    Article  CAS  Google Scholar 

  188. Zhao Y, Gong X, Si X et al (2015) Coupling a solid phase microextraction (SPME) probe with ambient MS for rapid enrichment and detection of phosphopeptides in biological samples. Analyst 140:2599–2602. doi:10.1039/C4AN02156H

    Article  CAS  Google Scholar 

  189. Banitaba MH, Davarani SSH, Pourahadi H (2013) Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO2 nanoparticles on a stainless steel fiber. J Chromatogr A 1283:1–8. doi:10.1016/j.chroma.2013.01.092

    Article  CAS  Google Scholar 

  190. Liu S, Xie L, Zheng J et al (2015) Mesoporous TiO2 nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Anal Chim Acta 878:109–117. doi:10.1016/j.aca.2015.03.054

    Article  CAS  Google Scholar 

  191. Li X, Li C, Chen J et al (2008) Polythiophene as a novel fiber coating for solid-phase microextraction. J Chromatogr A 1198–1199:7–13. doi:10.1016/j.chroma.2008.05.051

    Article  CAS  Google Scholar 

  192. Bagheri H, Mir A, Bahanezhad E (2005) An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water. Anal Chim Acta 532:89–95. doi:10.1016/j.aca.2004.10.040

    Article  CAS  Google Scholar 

  193. Mehdinia A, Bashour F, Roohi F et al (2012) Preparation and evaluation of thermally stable nano-structured self-doped polythiophene coating for analysis of phthalate ester trace levels. J Sep Sci 35:563–570. doi:10.1002/jssc.201100713

    Article  CAS  Google Scholar 

  194. Szultka M, Kegler R, Fuchs P et al (2010) Polypyrrole solid phase microextraction: a new approach to rapid sample preparation for the monitoring of antibiotic drugs. Anal Chim Acta 667:77–82. doi:10.1016/j.aca.2010.04.011

    Article  CAS  Google Scholar 

  195. Buszewski B, Szultka M, Olszowy P et al (2011) A novel approach to the rapid determination of amoxicillin in human plasma by solid phase microextraction and liquid chromatography. Analyst 136:2635–2642. doi:10.1039/C1AN00005E

    Article  CAS  Google Scholar 

  196. Olszowy P, Szultka M, Buszewski B (2011) Poly(3-alkylthiophenes): new sorption materials for solid phase microextraction of drugs isolated from human plasma. Anal Bioanal Chem 401:1377–1384. doi:10.1007/s00216-011-5159-0

    Article  CAS  Google Scholar 

  197. Olszowy P, Szultka M, Ligor T et al (2010) Fibers with polypyrrole and polythiophene phases for isolation and determination of adrenolytic drugs from human plasma by SPME–HPLC. J Chromatogr B 878:2226–2234. doi:10.1016/j.jchromb.2010.06.033

    Article  CAS  Google Scholar 

  198. Hashemi P, Shamizadeh M, Badiei A et al (2009) Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction. Anal Chim Acta 646:1–5. doi:10.1016/j.aca.2009.04.023

    Article  CAS  Google Scholar 

  199. Shamsipur M, Gholivand MB, Shamizadeh M et al (2015) Preparation and evaluation of a novel solid-phase microextraction fiber based on functionalized nanoporous silica coating for extraction of polycyclic aromatic hydrocarbons from water samples followed by GC–MS detection. Chromatographia 78:795–803. doi:10.1007/s10337-015-2896-9

    Article  CAS  Google Scholar 

  200. Shamizadeh M, Gholivand MB, Shamsipur M et al (2015) Mercaptopropyl-functionalized nanoporous silica as a novel coating for solid-phase microextraction fibers. Anal Methods 7:2505–2513. doi:10.1039/C4AY02826K

    Article  CAS  Google Scholar 

  201. Ouyang G, Oakes KD, Bragg L et al (2011) Sampling-rate calibration for rapid and nonlethal monitoring of organic contaminants in fish muscle by solid-phase microextraction. Environ Sci Technol 45:7792–7798. doi:10.1021/es201709j

    Article  CAS  Google Scholar 

  202. Silva ÉAS, Pawliszyn J (2012) Optimization of fiber coating structure enables direct immersion solid phase microextraction and high-throughput determination of complex samples. Anal Chem 84:6933–6938. doi:10.1021/ac301305u

    Article  CAS  Google Scholar 

  203. Musteata FM, Walles M, Pawliszyn J (2005) Fast assay of angiotensin 1 from whole blood by cation-exchange restricted-access solid-phase microextraction. Anal Chim Acta 537:231–237. doi:10.1016/j.aca.2005.01.028

    Article  CAS  Google Scholar 

  204. Xu J, Wu R, Huang S et al (2015) Polyelectrolyte microcapsules dispersed in silicone rubber for in vivo sampling in fish brains. Anal Chem 87:10593–10599. doi:10.1021/acs.analchem.5b03036

    Article  CAS  Google Scholar 

  205. Vuckovic D, Pawliszyn J (2011) Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography–mass spectrometry. Anal Chem 83:1944–1954. doi:10.1021/ac102614v

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the projects of NNSFC (Grants 21225731, 21377172, and 21477166) and the NSF of Guangdong Province (Grant S2013030013474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangfeng Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Xu, J., Ouyang, G. (2017). Development of Novel Solid-Phase Microextraction Fibers. In: Ouyang, G., Jiang, R. (eds) Solid Phase Microextraction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53598-1_2

Download citation

Publish with us

Policies and ethics