Skip to main content

Advances in Bioglass and Glass Ceramics for Biomedical Applications

  • Chapter
  • First Online:
Biomaterials for Implants and Scaffolds

Abstract

Tissue engineering and advanced biomedical technologies have proved to be potential to improve the quality of human life. During the last four decades, the capability to engineer or repair new functional tissues has been a very effective approach to improve the quality of life of patients. Since its discovery by Hench and co-workers in the 1960s, bioglasses and glass ceramics have attracted considerable attention of many researchers because of their unique properties which can easily be tailored by manipulating its compositions and morphology. Over the years, many questions concerning its interactions with both hard and soft tissues have been answered with a multidisciplinary team of surgeons, scientists and engineers. Many clinical Bioglass® and other similar structures and compositions are being used for bone augmentation and restoration, in orthopaedic, dental and maxillofacial surgery and in general in the field of tissue engineering. They have proved to be efficient and effective, some with outperformance over other bioceramic and metal prostheses. It is our aim in this chapter to present the development of these important biomaterials focusing on the history, synthesis, properties, modern characterisation methods and the current development of nano- and biocomposite materials for clinical applications.

Dedicated to Prof Larry Hench who has given us the ‘Bioglass’ and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Nissan B, Ylänen HO (2006) Bioactive glasses and glass ceramics, Wiley encyclopedia of biomedical engineering. Wiley, Hoboken

    Google Scholar 

  2. McMillan PW (1964) Glass ceramics. Academic, London

    Google Scholar 

  3. Hench LL, Wilson J (1984) Surface active materials. Science 226:630–636

    Article  Google Scholar 

  4. Hench LL (1988) Bioactive ceramics. In: Ducheyne P, Lemons JE (eds) Bioceramics: materials characteristics vs. in vivo behavior. New York Academy of Science, New York

    Google Scholar 

  5. Kokubo T (1991) Recent progress in glass-based materials for biomedical applications. J Ceram Soc Japan 99:965–973

    Article  Google Scholar 

  6. Kokubo T (1990) Novel biomaterials derived from glasses. In: Soga W, Kato A (eds) Ceramics: towards the 21st century. J Ceram Soc Japan, pp. 500–518.

    Google Scholar 

  7. Hench LL, Splinter RJ, Allen WC et al (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141

    Google Scholar 

  8. Vrouwenvelder WCA, Groot CG, de Groot K (1993) Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res 27:465–475

    Article  Google Scholar 

  9. Andersson OH, Kangasniemi I (1991) Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mat Res 25:1019–1030

    Article  Google Scholar 

  10. Li P, Yang Q, Zhang F et al (1992) The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Mater Sci: Mater Med 3:452–456

    Google Scholar 

  11. Kokubo T, Shigematsu M, Nagashima Y et al (1982) Apatite-wollastonite containing glass-ceramic for prosthetic application. Bull Inst Chem Res 60:260–268

    Google Scholar 

  12. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomat 2:231–239

    Article  Google Scholar 

  13. Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interf Sci 211:210–220

    Article  Google Scholar 

  14. Singh S, Bhardwaj P, Singh V et al (2008) Synthesis of nanocrystalline calcium phosphate in microemulsion-effect of nature of surfactants. J Colloid Interf Sci 319:322–329

    Article  Google Scholar 

  15. Karagiozov C, Momchilova D (2005) Synthesis of nano-sized particles from metal carbonates by the method of reversed mycelles. Chem Eng Process 44:115–119

    Article  Google Scholar 

  16. Sun Y, Guo G, Tao D et al (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377

    Article  Google Scholar 

  17. Boccaccini AR, Erol M, Stark WJ et al (2010) Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos Sci Technol 70:1764–1776

    Article  Google Scholar 

  18. Lim GK, Wang J, Ng SC et al (1996) Processing of fine hydroxyapatite powders via an inverse microemulsion route. Mater Lett 28:431–436

    Article  Google Scholar 

  19. Lim GK, Wang J, Ng SC et al (1999) Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions. Langmuir 15:7472–7477

    Article  Google Scholar 

  20. Quintero F, Mann AB, Pou J et al (2007) Rapid production of ultralong amorphous ceramic nanofibers by laser spinning. Appl Phys Lett 90:153109–3

    Article  Google Scholar 

  21. Quintero F, Pou J, Lusquiños F et al (2007) Experimental analysis of the production of micro- and nanofibres by Laser Spinning. Appl Surf Sci 254:1042–1047

    Article  Google Scholar 

  22. Quintero F, Dieste O, Pou J et al (2009) On the conditions to produce micro- and nanofibres by laser spinning. J Phys D: Appl Phys 42:1–10

    Article  Google Scholar 

  23. Quintero F, Pou J, Comesaña R et al (2009) Laser spinning of bioactive glass nanofibers. Adv Funct Mater 19:3084–3090

    Article  Google Scholar 

  24. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energ Combust Sci 24:197–219

    Article  Google Scholar 

  25. Stark WJ, Madler L, Maciejewski M et al (2003) Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. Chem Comm 5:588–589

    Article  Google Scholar 

  26. Madler L, Stark WJ, Pratsinis SE (2002) Flame-made ceria nanoparticles. J Mater Res 17:1356–1362

    Article  Google Scholar 

  27. Athanassiou EK, Grass RN, Stark WJ (2010) Chemical aerosol engineering as a novel tool for material science: from oxides to salt and metal nanoparticles. Aerosol Sci Tech 44:161–172

    Article  Google Scholar 

  28. Vollenweider M, Brunner TJ, Knecht S et al (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3:936–943

    Article  Google Scholar 

  29. Mohn D, Zehnder M, Imfeld T et al (2010) Radio-opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity. Int Endod J 43:210–217

    Article  Google Scholar 

  30. Ebelmen M (1846) On the synthesis of silica gels from alkoxides. Annales de chimie et de physique 16:129

    Google Scholar 

  31. Graham T (1864) On the properties of silicic acid and other analogous colloidal substances. J Chem Soc 17:318–327

    Article  Google Scholar 

  32. Liesegang RE (1896) Ueber einige Eigenschaften von Gallerten. Naturwissenschaftliche Wochenschrift 11:353–362

    Google Scholar 

  33. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  34. Cacciotti I, Lombardi M, Bianco A et al (2012) Sol-gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci Mater Med 23:1849–1866

    Article  Google Scholar 

  35. Chen QZ, Thouas GA (2011) Fabrication and characterization of sol-gel derived 45S5 Bioglass (R)-ceramic scaffolds. Acta Biomat 7:3616–3626

    Article  Google Scholar 

  36. Saboori A, Rabiee M, Mutarzadeh F et al (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Mat Sci Eng C-Bio S 29:335–340

    Article  Google Scholar 

  37. Jie Q, Lin KL, Zhong JP et al (2004) Preparation of macroporous sol-gel bioglass using PVA particles as pore former. J Sol-Gel Sci Technol 30:49–61

    Article  Google Scholar 

  38. Greenspan DC, Zhong JP, Chen XF et al (1997) The evaluation of degradability of melt and sol-gel derived Bioglass (R) in-vitro. Bioceramics 10:391–394

    Google Scholar 

  39. Sakka S (1985) Glasses and glass-ceramics from gels. J Non-Cryst Solids 73:651

    Article  Google Scholar 

  40. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740

    Article  Google Scholar 

  41. Pereira MM, Hench LL (1996) Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J Sol-Gel Sci Technol 7:59–68

    Article  Google Scholar 

  42. Andersson ÖH (1992) Glass transition temperature of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. J Mat Sci Mat Med 3:326–328

    Article  Google Scholar 

  43. Peitl Filho O, LaTorre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30:509–514

    Article  Google Scholar 

  44. Brink M (1997) Bioactive glasses with a large working range. Dissertation, Åbo Akademi University

    Google Scholar 

  45. Hayakawa S, Tsuru K, Ohtsuki C (1999) Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J Am Ceram Soc 82:2155–2160

    Article  Google Scholar 

  46. Arstila HE, Vedel L, Hupa L et al (2004) Measuring the devitrification of bioactive glasses. Key Eng Mater 254–256:67–70

    Article  Google Scholar 

  47. Ylänen HO, Helminen T, Helminen A et al (1999) Porous bioactive glass matrix in reconstruction of articular osteochondral defects. Ann Chir Gyn 83:237–245

    Google Scholar 

  48. Fröberg L, Hupa L, Hupa M (2004) Porous bioactive glasses with controlled mechanical strength. Key Eng Mater 254–256:973–976

    Article  Google Scholar 

  49. Oonishi H, Hench LL, Wilson J et al (2000) Quantitative comparison of bone growth behaviour in granules in bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 51:37–46

    Article  Google Scholar 

  50. Hench LL (1997) Glass and genes: a forecast to future. Glastech Ber Glass Sci Technol 70:439–452

    Google Scholar 

  51. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1727

    Article  Google Scholar 

  52. Strnad Z (1992) Role of the glass phase in bioactive glass-ceramic. Biomaterials 13:317–321

    Article  Google Scholar 

  53. Karlsson KH, Ylänen HO (1998) Porous bone implants. In: Vincenzini P (ed) Materials in clinical applications, advances in science and technology 28. 9th Cimtec-World Forum on New Materials, Florence

    Google Scholar 

  54. Serra J, González P, Liste S et al (2002) Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med 13:1221–1225

    Article  Google Scholar 

  55. Serra J, González P, Liste S et al (2003) FTIR and XPS studies of bioactive silica based glasses. J Noncryst Solids 332:20–27

    Article  Google Scholar 

  56. Ducheyne P, Brown S, Blumenthal N et al (1988) Bioactive glasses, aluminum oxide, and titanium. Ion transport phenomena and surface analysis. Ann NY Acad Sci 523:257–261

    Article  Google Scholar 

  57. Andersson ÖH, Karlsson KH, Kangasniemi K (1990) Calcium-phosphate formation at the surface of bioactive glass in vivo. J. Non-Cryst Solids 119:290–296

    Article  Google Scholar 

  58. Niki M, Ito G, Matsuda T et al (1991) Comparative push-out data of bioactive and non-bioactive materials of similar rugosity. In: Davies JE (ed) Bone-material interface. University of Toronto Press, Toronto

    Google Scholar 

  59. Fujiu T, Ogino M (1984) Difference of bone bonding behavior among surface active glasses and sintered apatite. J Biomed Mater Res 18:845–859

    Article  Google Scholar 

  60. Wilson J, Pigott GH, Schoen FJ et al (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817

    Article  Google Scholar 

  61. LeGeros RZ, LeGeros JP (1993) Dense hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to bioceramics, vol 1. World Scientific, Singapore

    Google Scholar 

  62. Lai W, Ducheyne P, Garino J (1998) Removal pathway of silicon released from bioactive glass granules in vivo. In: LeGeros RZ, LeGeros JP (eds) Bioceramics, vol 11. World Scientific, New York

    Google Scholar 

  63. Hench LL, West JK (1996) Biological applications of bioactive glasses. Life Chem Rep 13:187–241

    Google Scholar 

  64. Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42

    Article  Google Scholar 

  65. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  66. Merwin GE (1990) Review of bioactive materials for otologic and maxillofacial applications. In: Yamamuro T, Hench LL, Wilson J (eds) Handbook of bioactive ceramics, vol 1. CRC Press, Florida

    Google Scholar 

  67. Cai YR, Zhou L (2005) Effect of thermal treatment on the microstructure and mechanical properties of gel-derived bioglasses. Mater Chem Phys 94:283–287

    Article  Google Scholar 

  68. Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 14:967–978

    Article  Google Scholar 

  69. Hench LL, Andersson ÖH (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) An introduction to bioceramics, vol 1. World Scientific, Singapore

    Chapter  Google Scholar 

  70. Gross U, Kinne R, Schmitz HJ et al (1988) The response of bone to surface active glass/glass-ceramics. CRC Crit Rev Biocomput 4:2–15

    Google Scholar 

  71. Hench LL, Polak JM, Xynos ID et al (2000) Bioactive materials to control cell cycle. Mater Res Innov 3:313–323

    Article  Google Scholar 

  72. Ylänen HO, Karlsson KH, Itälä A et al (2000) Effect of immersion in SBF on porous bioactive bodies made by sintering bioactive glass microspheres. J Noncryst Solids 275:107–115

    Article  Google Scholar 

  73. Cao WP, Hench LL (1996) Bioactive materials. Ceram Int 22:493–507

    Article  Google Scholar 

  74. Hench LL (1998) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41:511–518

    Article  Google Scholar 

  75. Hench LL (1998) Bioceramics, a clinical success. Am Ceram Soc Bull 77:67–74

    Google Scholar 

  76. Loty C, Sautier J, Loty S et al (1998) Bioglass(R) promoted differentiation of cultured rat osteoblasts and created a template for bone formation. In: LeGeros RZ, LeGeros JP (eds) Bioceramics, vol 11. World Scientific, New York

    Google Scholar 

  77. Xynos ID, Hukkanen MVJ, Batten JJ et al (2000) Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcified Tissue Int 67:321–329

    Article  Google Scholar 

  78. Hench LL, Hench JW, Greenspan DC (2004) Bioglass: a short history and bibliography. J Aust Ceram Soc 40:1–42

    Google Scholar 

  79. Andersson Ö (1990) The bioactivity of silicate glass. Dissertation. Åbo Akademi University

    Google Scholar 

  80. Niemelä T (2010) Self-reinforced bioceramic and polylactide based composites. Dissertation. Tampere University of Technology

    Google Scholar 

  81. Brink M (1997) The influence of alkali and alkaline earths on the working range for bioactive glasses. J Biomed Mater Res 36:109–117

    Article  Google Scholar 

  82. Moritz N, Vedel E, Ylänen H et al (2003) Creation of bioactive glass coating on titanium by local laser irradiation, Part I: Optimisation of the processing parameters. Key Eng Mater 240–242:221–224

    Article  Google Scholar 

  83. Vedel E, Moritz N, Ylänen H et al (2003) Creation of bioactive glass coating on titanium by local laser irradiation, Part II: Effect of the irradiation on the bioactivity of the glass. Key Eng Mater 240–242:225–228

    Article  Google Scholar 

  84. Kokubo T, Ito S, Sakka S et al (1986) Formation of high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J Mater Sci 21:536–540

    Article  Google Scholar 

  85. Nakamura T, Yamamuro T (1993) Development of a bioactive ceramic, A/W glass-ceramic. In: Ducheyne P, Christiansen D (eds) Bioceramics, vol 6. Butterworth-Heinemann, Oxford

    Google Scholar 

  86. Kokubo T (1992) Bioactivity of glasses and glass-ceramics. In: Ducheyne P, Kokubo T, Van Blitterswijk CA (eds) Bone- bonding. Reed Healthcare Communications, Leiderdorp

    Google Scholar 

  87. Blencké BA, Brömer H, Deutscher KK (1978) Compatibility and long-term stability of glass-ceramic implants. J Biomed Mater Res 12:307–316

    Article  Google Scholar 

  88. Vogel W, Höland W (1990) Development, structure, properties and application of glass-ceramics for medicine. J Non-Cryst Solids 123:349–353

    Article  Google Scholar 

  89. Berger G, Sauer R, Steinborn G et al (1989) Clinical application of surface reactive apatite/wollastonite containing glass-ceramics. In: Mazurin OV (ed) Proceedings of XV international congress on glass. Leningrad, Nauka.

    Google Scholar 

  90. Pavek V, Novak Z, Strnad Z et al (1994) Clinical application of bioactive glass-ceramic BAS-O for filling cyst cavities in stomatology. Biomaterials 15:353–358

    Article  Google Scholar 

  91. Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120:138–151

    Article  Google Scholar 

  92. Kokubo T (1991) Bioactive glass-ceramics: properties and applications. Biomaterials 12:155–163

    Article  Google Scholar 

  93. Strunz V, Bunte M, Gross UM et al (1978) Coating of metal implants with the bioactive glass-ceramics. Ceravital Dtsch Zahnarztl Z 33:862–865

    Google Scholar 

  94. Fuchs GA, Deutscher K (1981) Glass-ceramic coated implants. A simple model for a loaded hip prosthesis with a bioactive interface. Arch Orthop Trauma Surg 98:121–126

    Article  Google Scholar 

  95. Takatsuka K, Yamamuro T, Kitsugi T et al (1993) A new bioactive glass-ceramic as a coating material on titanium alloy. J Appl Biomater 4:317–329

    Article  Google Scholar 

  96. Ido K, Matsuda Y, Yamamuro T et al (1993) Cementless total hip replacement. Bioactive glass ceramic coating studied in dogs. Acta Orthop Scand 64:607–612

    Article  Google Scholar 

  97. Li ZL, Kitsugi T, Yamamuro T et al (1995) Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite. J Biomed Mater Res 29:1081–1088

    Article  Google Scholar 

  98. Kitsugi T, Nakamura T, Oka M et al (1996) Bone-bonding behavior of plasma-sprayed coatings of Bioglass®, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J Biomed Mater Res 30:261–269

    Article  Google Scholar 

  99. Schwarz K (1973) A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci USA 70:1608–1612

    Article  Google Scholar 

  100. Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167:279–280

    Article  Google Scholar 

  101. Chen QZ, Boccaccini AR (2006) Poly(D, L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization. J Biomed Mater Res A 77:445–457

    Article  Google Scholar 

  102. Kim HW, Song JH, Kim HE (2006) Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix. J Biomed Mater Res A 79:698–705

    Article  Google Scholar 

  103. Hong Z, Reis RL, Mano JF (2009) Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. J Biomed Mater Res A 88:304–313

    Article  Google Scholar 

  104. Hajiali H, Karbasi S, Hosseinalipour M et al (2010) Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. J Mater Sci Mater Med 21:2125–2132

    Article  Google Scholar 

  105. Valenzuela F, Covarrubias C, Martinez C et al (2012) Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. J Biomed Mater Res B Appl Biomater 100:1672–1682

    Article  Google Scholar 

  106. Mehdikhani-Nahrkhalaji M, Fathi MH, Mortazavi V et al (2012) Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. J Mater Sci Mater Med 23:485–495

    Article  Google Scholar 

  107. Arcos D, Ragel CV, Vallet-Regi M (2001) Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 22:701–708

    Article  Google Scholar 

  108. Soundrapandian C, Datta S, Kundu B et al (2010) Porous bioactive glass scaffolds for local drug delivery in osteomyelitis: development and in vitro characterization. Aaps Pharmscitech 11:1675–1683

    Article  Google Scholar 

  109. Zhu M, Wang H, Liu J et al (2011) A mesoporous silica nanoparticulate/beta-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomaterials 32:1986–1995

    Article  Google Scholar 

  110. Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid). J Biomed Mater Res A 85:651–663

    Article  Google Scholar 

  111. Lee HH, Yu HS, Jang JH et al (2008) Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomater 4:622–629

    Article  Google Scholar 

  112. Niemelä T, Niiranen H, Kellomäki M et al (2005) Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity. Acta Biomat 1:235–242

    Article  Google Scholar 

  113. Wilson J, Yli-Urpo A, Happonen RP (1993) Bioactive glasses: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics, vol 1. World Scientific, Singapore

    Google Scholar 

  114. Stanley HR, Hall MB, Clark AE et al (1997) Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. Int J Oral Maxollofac Implants 12:95–105

    Google Scholar 

  115. Suominen E, Kinnunen J (1996) Bioactive glass granules and plates in the reconstruction of defects of the facial bones. Scand J Plast Reconstr Surg Hand Surg 30:281–289

    Article  Google Scholar 

  116. Aitasalo K, Suonpää J, Kinnunen I et al (1999) Reconstruction of orbital floor fractures with bioactive glass (S53P4). In: Ohgushi H, Hastings GW, Yoshikawa T (eds) Bioceramics, vol 12. World Scientific, Singapore

    Google Scholar 

  117. Suonpää J, Sipilä J, Aitasalo K et al (1997) Operative treatment of frontal sinusitis. Acta Otolaryngol Suppl (Stockh) 529:181–183

    Article  Google Scholar 

  118. Peltola M, Suonpää J, Aitasalo K et al (1998) Obliteration of the frontal sinus cavity with bioactive glass. Head Neck 20:315–318

    Article  Google Scholar 

  119. Peltola M, Aitasalo K, Suonpää J et al (2006) Bioactive glass S53P4 in frontal sinus obliteration: A long-term clinical experience. Head Neck-J Sci Spec 28:834–841

    Article  Google Scholar 

  120. Stoor P, Söderling E, Salonen JI (1998) Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 56:161–165

    Article  Google Scholar 

  121. Stoor P, Söderling E, Grenman R (1999) Interactions between the bioactive glass S53P4 and the atrophic rhinitis-associated microorganism Klebsiella ozaenae. J Biomed Mater Res 48:869–874

    Article  Google Scholar 

  122. Stoor P, Pulkkinen J, Grenman R (2010) Bioactive glass s53p4 in the filling of cavities in the mastoid cell area in surgery for chronic otitis media. Ann Oto Rhinol Laryn 119:377–382

    Google Scholar 

  123. Ylänen HO (2000) Bone ingrowth into porous bodies made by sintering bioactive glass microspheres. Dissertation, Åbo Akademi University

    Google Scholar 

  124. Hench LL, Greenspan D (2013) Interactions between bioactive glass and collagen: a review and new perspectives. J Aust Ceram Soc 49:1–40

    Google Scholar 

  125. Heikkilä JT, Aho AJ, Yli-Urpo A et al (1993) Bioactive glass versus hydroxyapatite in reconstruction of osteochondral defects in the rabbit. Acta Orthop Scand 64:678–682

    Article  Google Scholar 

  126. Suominen E, Aho AJ, Vedel E et al (1996) Subchondral bone and cartilage repair with bioactive glasses, hydroxyapatite, and hydroxyapatite-glass composite. J Biomed Mater Res 32:543–551

    Article  Google Scholar 

  127. Aho AJ, Tirri T, Kukkonen J et al (2004) Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: Concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-CO-D, L-lactide) and bioactive glass S53P4. J Mater Sci Mater Med 15:1165–1173

    Article  Google Scholar 

  128. Lee YK, Song J, Moon HJ et al (2004) In Vitro and in vivo evaluation of non-crystalline calcium phosphate glass as a bone substitute. Key Engineer Mater 254–256:185–188

    Article  Google Scholar 

  129. Lim HC, Sohn JY, Park JC et al (2010) Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects. J Biomed Mater Res B 95B:47–52

    Article  Google Scholar 

  130. Schepers E, De Clercq M, Ducheyne P et al (1991) Bioactive glass granulate material as a filler for bone lesions. J Oral Rehabil 18:439–452

    Article  Google Scholar 

  131. Gatti AM, Zaffe D (1991) Long-term behavior of active glasses in sheep mandibular bone. Biomaterials 12:345–350

    Article  Google Scholar 

  132. Garcia AJ, Ducheyne P (1994) Numerical analysis of extra- cellular fluid flow and chemical species transport around and within porous bioactive glass. J Biomed Mater Res 28:947–960

    Article  Google Scholar 

  133. Gatti AM, Valdre G, Tombesi A (1996) Importance of micro-analysis in understanding mechanism of transformation in active glassy biomaterials. J Biomed Mater Res 31:475–480

    Article  Google Scholar 

  134. Heikkilä JT, Aho HJ, Yli-Urpo A et al (1995) Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Acta Orthop Scand 66:463–467

    Article  Google Scholar 

  135. Oonishi H, Hench LL, Wilson J et al (1999) Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 44:31–43

    Article  Google Scholar 

  136. Virolainen P, Heikkilä J, Yli-Urpo A et al (1997) Histomorphometric and molecular biologic comparison of bioactive glass granules and autogenous bone grafts in augmentation of bone defect healing. J Biomed Mater Res 35:9–17

    Article  Google Scholar 

  137. Kawashita M, Shineha R, Kim HM et al (2003) Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 24:2955–2963

    Article  Google Scholar 

  138. Kawashita M (2002) Ceramic microspheres for in situ radiotherapy of cancer. Mat Sci Eng C-Bio S 22:3–8

    Article  Google Scholar 

  139. Kawashita M, Kokubo T, Inoue Y (1999) Preparation of Y2O3 microspheres for In Situ radiotherapy of cancer. In: Ohgushi H, Hastings GW, Yoshikawa T (eds) Bioceramics, vol 12. World Scientific, Singapore

    Google Scholar 

  140. Kawashita M, Tanaka M, Kokubo T et al (2002) Preparation of magnetite microspheres for hyperthermia of cancer. In: Brown S, Clarke I, Williams P (eds) Bioceramics, vol 14. Trans Tech Pub, Switzerland

    Google Scholar 

  141. Kawashita M, Tanaka M, Kokubo T et al (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26:2231–2238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ben-Nissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Ben-Nissan, B., Choi, A.H., Macha, I. (2017). Advances in Bioglass and Glass Ceramics for Biomedical Applications. In: Li, Q., Mai, YW. (eds) Biomaterials for Implants and Scaffolds. Springer Series in Biomaterials Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53574-5_5

Download citation

Publish with us

Policies and ethics