Skip to main content

Neurostimulationsverfahren

  • Chapter
  • First Online:
Neurochirurgische Schmerztherapie
  • 2035 Accesses

Zusammenfassung

Neuromodulatorische oder neuroaugmentive Eingriffe (Veränderung der Funktion durch elektrische Stimulation oder gezielte Medikamentenapplikation) haben in der letzten Hälfte des vorigen Jahrhunderts die bis dahin durchgeführten läsionellen Verfahren weitgehend abgelöst. Insbesondere die Reversibilität der Eingriffe, der Schwerpunkt auf der Modulation und nicht Zerstörung der Nervenfunktion und ein besseres Verständnis chronischer Schmerzen auf peripherer und zentraler Ebene haben diese Eingriffe besonders attraktiv gemacht. Neue Stimulationsverfahren (nicht-invasive oder invasive) und die Veränderung der Stimulationsparameter in den letzten 5–10 Jahren sind hinzugekommen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu 3.1–3.4

  • Al-Smadi J, Warke K, Wilson I, Cramp AF, Noble G, Walsh DM, Lowe-Strong AS (2003) A pilot investigation of the hypoalgesic effects of transcutaneous electrical nerve stimulation upon low back pain in people with multiple sclerosis. Clin Rehabil 17: 742–749

    Article  CAS  PubMed  Google Scholar 

  • Al Tamimi M, Davids HR, Barolat G, Krutsch J, Ford T (2008) Subcutaneous peripheral nerve stimulation treatment for chronic pelvic pain. Neuromodulation 11: 277–281

    Article  PubMed  Google Scholar 

  • Ansarinia M, Rezai A, Tepper SJ, Steiner CP, Stump J, Stanton-Hicks M, Machado A, Narouze S (2010) Electrical stimulation of sphenopalatine ganglion for acute treatment of cluster headaches. Headache 50: 1164–1174

    Article  PubMed  Google Scholar 

  • Barloese MC, Jürgens TP, May A, Lainez JM, Schoenen J, Gaul C, Goodman AM, Caparso A, Jensen RH (2016) Cluster headache attack remission with sphenopalatine ganglion stimulation: experiences in chronic cluster headache patients through 24 months. J Headache Pain 17: 67. doi: 10.1186/s10194-016-0658-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Barolat G (2011) Peripheral subcutaneous stimulation for intractable abdominal pain. Prog Neurol Surg 24: 70–76

    Article  PubMed  Google Scholar 

  • Brosseau L, Milne S, Robinson V, Marchand S, Shea B, Wells G, Tugwell P (2002) Efficacy of the transcutaneous electrical nerve stimulation for the treatment of chronic low back pain: a meta-analysis. Spine 27: 596–603

    Article  PubMed  Google Scholar 

  • Burns B, Watkins L, Goadsby PJ (2008) Treatment of hemicrania continua by occipital nerve stimulation with a bion device: long-term follow-up of a crossover study. Lancet Neurol 7: 1001–1012

    Article  PubMed  Google Scholar 

  • Buschmann D, Oppel F (1999) Periphere Nervenstimulation. Schmerz 13: 113–120

    Article  CAS  PubMed  Google Scholar 

  • Campbell JN, Long DM (1976) Peripheral nerve stimulation in the treatment of intractable pain. J Neurosurg 45: 692–699

    Article  CAS  PubMed  Google Scholar 

  • Chakrabortty S, Kumar S, Gupta D, Rudraraju S (2016) Intractable sacroiliac joint pain treated with peripheral nerve field stimulation. J Anaesthesiol Clin Pharmacol 32: 392–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung J, Lee K, Hori Y, Endo K, Willis W (1984) Factors influencing peripheral nerve stimulation produced inhibition of primate spinothalamic tract cells. Pain 19: 277–293

    Article  CAS  PubMed  Google Scholar 

  • Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur JP, Simpson BA, Taylor RS (2007) EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 14: 952–970

    Article  CAS  PubMed  Google Scholar 

  • Deer T, Pope J, Benyamin R, Vallejo R, Friedman A, Caraway D, Staats P, Grigsby E, Porter McRoberts W, McJunkin T, Shubin R, Vahedifar P, Tavanaiepour D, Levy R, Kapural L, Mekhail N (2016) Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin. Neuromodulation 19: 91–100

    Article  PubMed  Google Scholar 

  • Dubinsky RM, Miyasaki J (2010) Assessment: efficacy of transcutaneous electric nerve stimulation in the treatment of pain in neurologic disorders (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74: 173–176

    Article  PubMed  Google Scholar 

  • Dunteman E (2002) Peripheral nerve stimulation for unremitting opthalmic postherpetic neuralgia. Neuromodulation 5: 32–37

    Google Scholar 

  • Falco FJ, Berger J, Vrable A, Onyewu O, Zhu J (2009) Cross talk: a new method for peripheral nerve stimulation. An observational report with cadaveric verification. Pain Physician 12: 965–983

    PubMed  Google Scholar 

  • Feletti A, Santi GZ, Sammartino F, Bevilacqua M, Cisotto P, Longatti P (2013) Peripheral trigeminal nerve field stimulation: report of 6 cases. Neurosurg Focus 35: E10

    Article  PubMed  Google Scholar 

  • Forst T, Nguyen M, Forst S, Disselhoff B, Pohlmann T, Pfützner A (2004) Impact of low frequency transcutaneous electrical nerve stimulation on symptomatic diabetic neuropathy using the new Salutaris device. Diabetes Nutr Metab 17: 163–168

    CAS  PubMed  Google Scholar 

  • Frahm KS, Hennings K, Vera-Portocarrero L, Wacnik PW, Mørch CD (2016) Nerve fiber activation during peripheral nerve field stimulation: importance of electrode orientation and estimation of area of paresthesia. Neuromodulation 19: 311–318

    Article  PubMed  Google Scholar 

  • Ghoname EA, Craig WF, White PF, Ahmed HE, Hamza MA, Henderson BN, Gajraj NM, Huber PJ, Gatchel RJ (1999) Percutaneous electrical nerve stimulation for low back pain: a randomized crossover study. JAMA 281: 818–823

    Article  CAS  PubMed  Google Scholar 

  • Ghoname ES, Craig WF, White PF, Ahmed HE, Hamza MA, Gajraj NM, Vakharia AS, Noe CE (1999) The effect of stimulus frequency on the analgesic response to percutaneous electrical nerve stimulation in patients with chronic low back pain. Anesth Analg 88: 841–846

    Article  CAS  PubMed  Google Scholar 

  • Goroszeniuk T, Khan R (2011) Permanent percutaneous splanchnic nerve neuromodulation for management of pain due to chronic pancreatitis: a case report. Neuromodulation 14: 253–257

    Article  PubMed  Google Scholar 

  • Guentchev M, Preuss C, Rink R, Peter L, Wocker EL, Tuettenberg J (2015) Technical note: treatment of sacroiliac joint pain with peripheral nerve stimulation. Neuromodulation 18: 392–396

    Article  PubMed  Google Scholar 

  • Gybels J, Kupers R (1987) Central and peripheral electrical stimulation of the nervous system in the treatment of chronic pain. Acta Neurochir Suppl (Wien). 1987;38:64–75

    Article  CAS  PubMed  Google Scholar 

  • Hamm-Faber TE, Aukes H, van Gorp EJ, Gültuna I (2015) Subcutaneous stimulation as an additional therapy to spinal cord stimulation for the treatment of low back pain and leg pain in failed back surgery syndrome: four-year follow-up. Neuromodulation 18: 618–622

    Article  PubMed  Google Scholar 

  • Hamza MA, White PF, Craig WF, Ghoname ES, Ahmed HE, Proctor TJ, Noe CE, Vakharia AS, Gajraj N (2000) Percutaneous electrical nerve stimulation: a novel analgesic therapy for diabetic neuropathic pain. Diabetes Care 23: 365–370

    Article  CAS  PubMed  Google Scholar 

  • Hassenbusch SJ, Stanton-Hicks M, Schoppa D, Walsh JG, Covington EC (1996) Long-term results of peripheral nerve stimulation for reflex sympathetic dystrophy. J Neurosurg 84: 415–423

    Article  CAS  PubMed  Google Scholar 

  • Hord ED, Evans MS, Mueed S, Adamolekun B, Naritoku DK (2003) The effect of vagus nerve stimulation on migraines. J Pain 4: 530–534

    Article  PubMed  Google Scholar 

  • Ignelzi RJ, Nyquist JK (1979) Excitability changes in peripheral nerve fibers after repetitive electrical stimulation: implications in pain modulation. J Neurosurg 51: 824–833

    Article  CAS  PubMed  Google Scholar 

  • Ilfeld BM, Grant SA, Gilmore CA, Chae J, Wilson RD, Wongsarnpigoon A, Boggs JW (2016) Neurostimulation for postsurgical analgesia: a novel system enabling ultrasound-guided percutaneous peripheral nerve stimulation. Pain Pract 2016 Dec 2. doi: 10.1111/papr.12539. [Epub ahead of print]

  • Ilfeld BM, Gilmore CA, Grant SA, Bolognesi MP, Del Gaizo DJ, Wongsarnpigoon A, Boggs JW (2017) Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. J Orthop Surg Res 12: 4

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson MD, Burchiel KJ (2004) Peripheral stimulation for treatment of trigeminal postherpetic neuralgia and trigeminal posttraumatic neuropathic pain: a pilot study. Neurosurgery 55: 135–141

    Article  PubMed  Google Scholar 

  • Johnson MI, Paley CA, Howe TE, Sluka KA (2015) Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst Rev 15: CD006142

    Google Scholar 

  • Johnson S, Goebel A (2016) Long-term treatment of chronic neuropathic pain using external noninvasive external peripheral nerve stimulation in five patients. Neuromodulation 19: 893–896

    Article  PubMed  Google Scholar 

  • Johnson S, Goebel A, Richey R, Holmes E, Hughes D (2016) A randomised, patient-assessor blinded, sham-controlled trial of external non-invasive peripheral nerve stimulation for chronic neuropathic pain following peripheral nerve injury (EN-PENS trial): study protocol for a randomised controlled trial. Trials 17: 574

    Article  PubMed  PubMed Central  Google Scholar 

  • Jürgens T, Paulus W, Tronnier V, Gaul C, Lampl C, Gantenbein A, May A, Diener HC (2011) Einsatz neuromodulierender Verfahren bei primären Kopfschmerzen. Nervenheilkunde 30: 47–58

    Article  Google Scholar 

  • Jürgens TP, Barloese M, May A, Láinez JM, Schoenen J, Gaul C, Goodman AM, Caparso A, Jensen RH (2016) Long-term effectiveness of sphenopalatine ganglion stimulation for cluster headache. Cephalalgia. 2016 May 9. pii: 0333102416649092. [Epub ahead of print]

    Google Scholar 

  • Khan YN, Raza SS, Khan AE (2005) Application of spinal cord stimulation for the treatment of abdominal visceral pain syndromes: case reports. Neuromodulation 8: 14–27

    Article  PubMed  Google Scholar 

  • Kirchner A, Birklein F, Stefan H, Handwerker HO (2000) Left vagus nerve stimulation suppresses experimentally induced pain. Neurology 55: 1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Kloimstein H, Likar R, Kern M, Neuhold J, Cada M, Loinig N, Ilias W, Freundl B, Binder H, Wolf A, Dorn C, Mozes-Balla EM, Stein R, Lappe I, Sator-Katzenschlager S (2014) Peripheral nerve field stimulation (PNFS) in chronic low back pain: a prospective multicenter study. Neuromodulation 17: 180–187

    Article  PubMed  Google Scholar 

  • Kouroukli I, Neofytos D, Panaretou V, Zompolas V, Papastergiou D, Sanidas G, Papavassilopoulou T, Georgiou L (2009) Peripheral subcutaneous stimulation for the treatment of intractable postherpetic neuralgia: two case reports and literature review. Pain Pract 9: 225–229

    Article  PubMed  Google Scholar 

  • Kumar D, Marshall HJ (1997) Diabetic peripheral neuropathy: amelioration of pain with transcutaneous electrostimulation. Diabetes Care 20: 1702–1705

    Article  CAS  PubMed  Google Scholar 

  • Kupers R, Laere KV, Calenbergh FV, Gybels J, Dupont P, Baeck A, Plaghki L (2011) Multimodal therapeutic assessment of peripheral nerve stimulation in neuropathic pain: five case reports with a 20-year follow-up. Eur J Pain 15: 161.e1–9

    Google Scholar 

  • Law JD, Swett J, Kirsch WM (1980) Retrospective analysis of 22 patients with chronic pain treated by peripheral nerve stimulation. J Neurosurg 52: 482–485

    Article  CAS  PubMed  Google Scholar 

  • Lepski G, Vahedi P, Tatagiba MS, Morgalla M (2013) Combined spinal cord and peripheral nerve field stimulation for persistent post-herniorrhaphy pain. Neuromodulation 16: 84–88

    Article  PubMed  Google Scholar 

  • Long DM (1976) Use of peripheral and spinal cord stimulation in the relief of chronic pain. In: Advances in Pain Research and Therapy, Vol1, Bonica JJ, Albe-Fessard D (Hrsg), Raven Press New York, S. 395–403

    Google Scholar 

  • Long DM, Erickson D, Campbell J, North R (1981) Electrical stimulation of the spinal cord and peripheral nerves for pain control. A 10-year experience. Appl Neurophysiol 44: 207–217

    CAS  PubMed  Google Scholar 

  • Marchand S, Charest J, Li J, Chenard JR, Lavignolle B, Laurencelle L (1993) Is TENS purely a placebo effect? A controlled study on chronic low back pain. Pain 54: 99–106

    Article  CAS  PubMed  Google Scholar 

  • Matsuo H, Uchida K, Nakajima H, Guerrero AR, Watanabe S, Takeura N, Sugita D, Shimada S, Nakatsuka T, Baba H (2014) Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain 155: 1888–1901

    Article  CAS  PubMed  Google Scholar 

  • Mauskop A (2005) Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia 25: 82–86

    Article  CAS  PubMed  Google Scholar 

  • McRoberts WP, Wolkowitz R, Meyer DJ, Lipov E, Joshi J, Davis B, Cairns KD, Barolat G (2013) Peripheral nerve field stimulation for the management of localized chronic intractable back pain: results from a randomized controlled study. Neuromodulation 16: 565–574

    Article  PubMed  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150: 971–979

    Article  CAS  PubMed  Google Scholar 

  • Mironer YE, Hutcheson JK, Satterthwaite JR, LaTourette PC (2011) Prospective, two-part study of the interaction between spinal cord stimulation and peripheral nerve field stimulation in patients with low back pain: development of a new spinal-peripheral neurostimulation method. Neuromodulation 14: 151–154

    Article  PubMed  Google Scholar 

  • Mironer YE, Monroe TR (2013) Spinal-peripheral neurostimulation (SPN) for bilateral postherniorrhaphy pain: a case report. Neuromodulation 16: 603–606

    Article  PubMed  Google Scholar 

  • Mitchell B, Verrills P, Vivian D, DuToit N, Barnard A, Sinclair C (2016) Peripheral nerve field stimulation therapy for patients with thoracic pain: a prospective study. Neuromodulation. 19: 752–759

    Article  PubMed  Google Scholar 

  • Monti E (2004) Peripheral nerve stimulation: a percutaneous minimally invasive approach. Neuromodulation 7: 193–196

    Article  PubMed  Google Scholar 

  • Mørch CD, Nguyen GP, Wacnik PW, Andersen OK (2014) Mathematical model of nerve fiber activation during low back peripheral nerve field stimulation: analysis of electrode implant depth. Neuromodulation 17: 218–225

    Article  PubMed  Google Scholar 

  • Nashold BS Jr, Goldner JL, Mullen JB, Bright DS (1982) Long-term pain control by direct peripheral-nerve stimulation. J Bone Joint Surg 64: 1–10

    Article  PubMed  Google Scholar 

  • Nielson KD, Watts C, Clark WK (1976) Peripheral nerve injury from implantation of chronic stimulating electrodes for pain control. Surg Neurol 5: 51–53

    CAS  PubMed  Google Scholar 

  • Paicius RM, Bernstein CA, Lempert-Cohen C (2006) Peripheral nerve field stimulation in chronic abdominal pain. Pain Physician 9: 261–266

    PubMed  Google Scholar 

  • Paicius RM, Bernstein CA, Lempert-Cohen C (2007) Peripheral nerve field stimulation for the treatment of chronic low back pain: preliminary results of long-term follow-up: a case series. Neuromodulation 10: 279–290

    Article  PubMed  Google Scholar 

  • Picaza JA, Hunter SE, Cannon BW (1978) Pain suppression by peripheral nerve stimulation. Chronic effects of implanted devices. Appl Neurophysiol 40: 223–234

    CAS  Google Scholar 

  • Raphael JH, Raheem TA, Southall JL, Bennett A, Ashford RL, Williams S (2011) Randomized double-blind sham-controlled crossover study of short-term effect of percutaneous electrical nerve stimulation in neuropathic pain. Pain Med 12: 1515–1522

    Article  PubMed  Google Scholar 

  • Rauchwerger JJ, Giordano J, Rozen D, Kent JL, Greenspan J, Closson CW (2008) On the therapeutic viability of peripheral nerve stimulation for ilioinguinal neuralgia: putative mechanisms and possible utility. Pain Pract 8: 138–143

    Article  PubMed  Google Scholar 

  • Rosendal F, Moir L, de Pennington N, Green AL, Aziz TZ (2013) Successful treatment of testicular pain with peripheral nerve stimulation of the cutaneous branch of the ilioinguinal and genital branch of the genitofemoral nerves. Neuromodulation 16: 121–124

    Article  PubMed  Google Scholar 

  • Rossi M, DeCarolis G, Liberatoscioli G, Iemma D, Nosella P, Nardi LF (2016) A novel mini-invasive approach to the treatment of neuropathic pain: the PENS-study. Pain Physician 19: E121–E128

    PubMed  Google Scholar 

  • Saper JR, Dodick DW, Silberstein SD, McCarville S, Sun M, Goadsby PJ (2011) ONSTIM Investigators. Occipital nerve stimulation for the treatment of intractable chronic migraine headache: ONSTIM feasibility study. Cephalalgia 31: 271–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Sator-Katzenschlager S, Fiala K, Kress HG, Kofler A, Neuhold J, Kloimstein H, Ilias W, Mozes-Balla EM, Pinter M, Loining N, Fuchs W, Heinze G, Likar R (2010) Subcutaneous target stimulation (STS) in chronic noncancer pain: a nationwide retrospective study. Pain Pract 10: 279–286

    Article  PubMed  Google Scholar 

  • Schoenen J, Jensen RH, Lantéri-Minet M, Láinez MJ, Gaul C, Goodman AM, Caparso A, May A (2013) Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: A randomized, sham-controlled study. Cephalalgia 33: 816–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Serra G, Marchioretto F (2012) Occipital nerve stimulation for chronic migraine: a randomized trial. Pain Physician 15: 245–253

    PubMed  Google Scholar 

  • Shelden CH (1966) Depolarization in the treatment of trigeminal neuralgia. Evaluation of compression and electrical methods; clinical concept of neurophysiological mechanism. In: Kingston RS, Dumke PR (Hrsg). Pain, Boston Little Brown, S. 373–386

    Google Scholar 

  • Silberstein SD, Dodick DW, Saper J, Huh B, Slavin KV, Sharan A, Reed K, Narouze S, Mogilner A, Goldstein J, Trentman T, Vaisma J, Ordia J, Weber P, Deer T, Levy R, Diaz RL, Washburn SN, Mekhail N (2012) Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia 32: 1165–1179

    Article  PubMed  Google Scholar 

  • Stinson LW jr, Roderer GT, Cross NE, Davis BE (2001) Peripheral subcutaneous electrostimulation for control of intractable postoperative inguinal pain. Neuromodulation 4: 99–104

    Google Scholar 

  • Sweet WH, Wepsic JG (1968) Treatment of chronic pain by stimulation of fibers of primary afferent neurons. Trans Am Neurol Assoc 93: 103–107

    CAS  PubMed  Google Scholar 

  • Sweet WH (1976) Control of pain by direct electrical stimulation of peripheral nerves. Clin Neurosurg 23: 103–111

    Article  CAS  PubMed  Google Scholar 

  • Tepper SJ, Rezai A, Narouze S, Steiner C, Mohajer P, Ansarinia M (2009) Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation. Headache 49: 983–989

    Article  PubMed  Google Scholar 

  • Theodosiadis P, Grosomanidis V, Samoladas E, Chalidis BE (2010) Subcutaneous targeted neuromodulation technique for the treatment of intractable chronic postthoracotomy pain. J Clin Anesth 22: 638–641

    Article  PubMed  Google Scholar 

  • Tronnier V (2013) Interventionelle Verfahren, in: Baron, Koppert, Strumpf, Willweber.-Strumpf (Hrsg), Praktische Schmerzmedizin, 3. Aufl, Springer Heidelberg, 137-161, S.141

    Google Scholar 

  • Tulgar M, McGlone F, Bowsher D, Miles JB (1991) Comparative effectiveness of different stimulation modes in relieving pain. Part II. A double-blind controlled long-term clinical trial. Pain 47: 157–162

    CAS  Google Scholar 

  • Upadhay SP, Rana SP, Mishra S, Bhatnagar S (2010) Successful treatment of an intractable postherpetic neuralgia (PHN) using peripheral nerve field stimulation (PFNS). Am J Hosp Palliat Care 27: 59–62

    Google Scholar 

  • Urban BJ, Nashold BS Jr (1982) Combined epidural and peripheral nerve stimulation for relief of pain. Description of technique and preliminary results. J Neurosurg 57: 365–369

    Article  CAS  PubMed  Google Scholar 

  • van Gorp EJ, Teernstra OP, Gültuna I, Hamm-Faber T, Bürger K, Schapendonk R, Willem Kallewaard J, Spincemaille G, Vonhögen LH, Hendriks JC, Vissers KC (2016) Subcutaneous stimulation as ADD-ON therapy to spinal cord stimulation is effective in treating low back pain in patients with failed back surgery syndrome: a multicenter randomized controlled trial. Neuromodulation 19: 171–178

    Article  PubMed  Google Scholar 

  • Vera-Portocarrero LP, Cordero T, Billstrom T, Swearingen K, Wacnik PW, Johanek LM (2013) Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain. Neuromodulation 16: 328–335

    Article  PubMed  Google Scholar 

  • Verrills P, Mitchell B, Vivian D, Sinclair C (2009) Peripheral nerve stimulation: a treatment for chronic low back pain and failed back surgery syndrome? Neuromodulation 12: 68–75

    Article  PubMed  Google Scholar 

  • Verrills P, Vivian D, Mitchell B, Barnard A (2011) Peripheral nerve field stimulation for chronic pain: 100 cases and review of the literature. Pain Med 12: 1395–1405

    Article  PubMed  Google Scholar 

  • Waisbrod H, Panhans C, Hansen D, Gerbershagen HU (1985) Direct nerve stimulation for painful peripheral neuropathies. J Bone Joint Surg Br 67: 470–472

    Article  CAS  PubMed  Google Scholar 

  • Wall PD, Gutnick M (1974) Properties of afferent nerve impulses originating from a neuroma. Nature 248: 740–743

    Article  CAS  PubMed  Google Scholar 

  • Wall PD, Sweet WH (1967) Temporal abolition of pain in man. Science 155: 108–109

    Article  CAS  PubMed  Google Scholar 

  • Weiner DK, Rudy TE, Glick RM, Boston JR, Lieber SJ, Morrow LA, Taylor S (2003) Efficacy of percutaneous electrical nerve stimulation for the treatment of chronic low back pain in older adults. J Am Geriatr Soc 51: 599–608

    Article  PubMed  Google Scholar 

  • Weiner RL, Reed KL (1999) Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation 2: 217–221

    Article  CAS  PubMed  Google Scholar 

  • Weiner RL (2003) Peripheral nerve neurostimulation. Neurosurg Clin N Am 14: 401–418

    Article  PubMed  Google Scholar 

  • Winkelmueller M, Kolodziej MA, Welke W, Koulousakis A, Martinez R (2016) Subcutaneous peripheral nerve field stimulation for the treatment of chronic back pain: patient selection and technical aspects. J Neurol Surg A Cent Eur Neurosurg 77: 63–67

    PubMed  Google Scholar 

  • Yakovlev AE, Resch BE, Yakovleva VE (2011) Peripheral nerve field stimulation in the treatment of postlaminectomy syndrome after multilevel spinal surgeries. Neuromodulation 14: 534–538

    Article  PubMed  Google Scholar 

  • Zibly Z, Sharma M, Shaw A, Deogaonkar M (2014) Peripheral field stimulation for thoracic post herpetic neuropathic pain. Clin Neurol Neurosurg 127: 101–105

    Article  PubMed  Google Scholar 

Literatur zu 3.5 bis 3.8

  • Aksu R, Uğur F, Bicer C, Menkü A, Güler G, Madenoğlu H, Canpolat DG, Boyaci A (2010) The efficiency of pulsed radiofrequency application on L5 and l6 dorsal roots in rabbits developing neuropathic pain. Reg Anesth Pain Med 35: 11–15

    Article  PubMed  Google Scholar 

  • Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T (2014) Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med 15: 347–354

    Article  PubMed  Google Scholar 

  • Al-Kaisy A, Palmisani S, Smith TE, Pang D, Lam K, Burgoyne W, Houghton R, Hudson E, Lucas J (2017) 10 kHz high-frequency spinal cord stimulation for chronic axial low back pain in patients with no history of spinal surgery: a preliminary, prospective, open label and proof-of-concept study. Neuromodulation 20: 63–70

    Article  PubMed  Google Scholar 

  • Andersen C, Hole P, Oxhøj H (1994) Does pain relief with spinal cord stimulation for angina conceal myocardial infarction? Br Heart J 71: 419–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen C, Oxhøj H, Arnsbo P (1990) Management of spinal cord stimulators in patients with cardiac pacemakers. Pacing Clin Electrophysiol 13: 574–577

    Article  CAS  PubMed  Google Scholar 

  • Arle JE, Mei L, Carlson KW, Shils JL (2016) High-frequency stimulation of dorsal column axons: potential underlying mechanism of paresthesia-free neuropathic pain relief. Neuromodulation 19: 385–397

    Article  PubMed  Google Scholar 

  • Armour JA, Linderoth B, Arora RC, DeJongste MJ, Ardell JL, Kingma JG Jr, Hill M, Foreman RD (2002) Long-term modulation of the intrinsic cardia nervous system by spinal cord neurons in normal and ischemic hearts. Auton Neurosci 95: 71–79

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson S, Larsson M, Larsson H, Lindstrom E, Martinez V (2006) Assessment of visceral pain-related pseudo-affective responses to colocolorectal distension in mice by intracolonic manometric recordings. J Pain 7: 108–118

    Article  PubMed  Google Scholar 

  • Augustinsson LE, Carlsson CA, Holm J, Jivegård L (1985) Epidural electrical stimulation in severe limb ischemia. Pain relief, increased blood flow, and a possible limb-saving effect. AnnSurg 202: 104–110

    CAS  Google Scholar 

  • Augustinsson LE, Linderoth B, Mannheimer C, Eliasson T (1995) Spinal cord stimulation in cardiovascular disease. Neurosurg Clin N Am 6: 157–165

    CAS  PubMed  Google Scholar 

  • Bantli H, Bloedel JR, Thienprasit P (1975) Supraspinal interactions resulting from experimental dorsal column stimulation. J neuerosurg 42: 296–300

    Article  CAS  Google Scholar 

  • Barchini J, Tchachagian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, Linderoth B, Saade NE (2012) Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 215: 196–208

    Article  CAS  PubMed  Google Scholar 

  • Barolat G (1993) Experience with 509 plate electrodes implanted epidurally from C1 to L1. Stereotact Funct Neurosurg 61: 60–79

    Article  CAS  PubMed  Google Scholar 

  • Benfield J, Maknojia A, Epstein F (2016) Progressive paraplegia from spinal cord stimulator lead fibrotic encapsulation: a case report. Am J Phys Med Rehabil 95: e30–e33

    Article  PubMed  Google Scholar 

  • Bennett GJ, Xie Y-K (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33; 87–107

    Google Scholar 

  • Bergan JJ, Conn JJ Jr (1968) Sympathectomy for pain relief. Med Clin North Am 52: 147–159

    Google Scholar 

  • Bhadra N, Lahowetz EA, Foldes ST, Kilgore KL (2007) Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. J Comput Neurosci 22: 313–326

    Article  PubMed  Google Scholar 

  • Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, Raab G, Ruckley CV (2010) Multicentre randomised controlled trial of the clinical and cost-effectiveness of a bypass-surgery-first versus a balloon-angioplasty-first revascularisation strategy for severe limb ischaemia due to infrainguinal disease. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial. Health Technol Assess 14: 1–210

    Article  CAS  Google Scholar 

  • Brierley S M, Jones RC III, Gebhart GF, Blackshaw LA (2004) Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127: 166–178

    Article  PubMed  Google Scholar 

  • Broseta J, Barbera J, de Vera JA, Barcia-Salorio JL, Garcia-March G, Gonzalez-Darder J, Rovaina F, Joanes V (1986) Spinal cord stimulation in peripheral arterial disease. A cooperative study. J Neurosurg 64: 71–80

    CAS  PubMed  Google Scholar 

  • Buchser E, Durrer A, Albrecht E (2006) Spinal cord stimulation for the management of refractory angina pectoris. J Pain Symptom Manage 31 (Suppl 4): S36–S42

    Article  PubMed  Google Scholar 

  • Bunt TJ, Holloway GA, Lawrence P, Cherney D, Malone JM (1991) Experience with epidural spinal stimulation in the treatment of end-stage peripheral vascular disease. Semin Vasc Surg 4: 216–220

    Google Scholar 

  • Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 100 (3 Suppl): 254–267

    PubMed  Google Scholar 

  • Capelle HH, Simpson RK Jr, Kronenbuerger M, Michaelsen J, Tronnier V, Krauss JK (2005) Long-term deep brain stimulation in elderly patients with cardiac pacemakers. J Neurosurg 102: 53–59

    Article  PubMed  Google Scholar 

  • Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S (2013) A computational model for epidural electrical stimulation of sensorimotor circuits. J Neurosci 33: 19326–19340

    Article  CAS  PubMed  Google Scholar 

  • Cardinal R, Ardell JL, Linderoth B, Vermeulen M, Foreman RD, Armour JA (2004) Spinal cord activation differentially modulates ischaemic electrically responses to different stressors in canine ventricles Auton Neurosci 111: 37–47

    Google Scholar 

  • Chandler MJ, Brennan TJ, Garrison DW, Kim KS, Schwartz PJ, Foreman RD (1993) A mechanism of cardiac pain suppression by spinal cord stimulation: impolications for patients with angina pectoris. Eur Heart J 14: 96–105

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li Q, Wang W, Ma B, Hao H, Li L (2013) In vivo experimental study of thermal problems for rechargeable neurostimulators. Neuromodulation 16: 436–441

    Article  PubMed  Google Scholar 

  • Choi GS, Ahn SH, Cho YW, Lee DG (2012) Long-term effect of pulsed radiofrequency on chronic cervical radicular pain refractory to repeated transforaminal epidural steroid injections. Pain Med 13: 368–375

    Article  PubMed  Google Scholar 

  • Chung J, Lee K, Hori Y, Endo K, Willis W (1984) Factors influencing peripheral nerve stimulation produced inhibition of primate spinothalamic tract cells. Pain 19: 277–293

    Article  CAS  PubMed  Google Scholar 

  • Cicuendez M, Munarriz PM, Castaño-Leon AM, Paredes I (2012) Dorsal myelopathy secondary to epidural fibrous scar tissue around a spinal cord stimulation electrode. J Neurosurg Spine 17: 598–601

    Article  PubMed  Google Scholar 

  • Claeys LGY, Ktenidis K, Horsch S (1998) Effects of spinal cord stimulation on ischemic pain in patients with Buerger’s disease. Pain Dig 7: 138–141

    Google Scholar 

  • Claeys LG (1999) Spinal cord stimulation and chronic critical limb ischemia. Neuromodulation 2: 1–3

    Article  CAS  PubMed  Google Scholar 

  • Cook AW, Oygar A, Baggenstos P, Pacheco S, Kleriga E (1976) Vascular disease of extremities. Electric stimulation of spinal cord and posterior roots. N Y State J Med 76: 366–368

    CAS  PubMed  Google Scholar 

  • Courtney P, Espinet A, Mitchell B,Russo M, Muir A, Verrills P, Davis K (2015) Improved pain relief with burst spinal cord stimulation for two weeks in patients using tonic stimulation: results from a small clinical study. Neuromodulation 18: 361–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Croom JE, Foreman RD, Chandler MJ, Barron KW (1997) Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP. Am J Physiol 272: H950–H957

    Article  CAS  PubMed  Google Scholar 

  • Crosby ND, Goodman Keiser MD, Smith JR, Zeeman ME, Winkelstein BA (2015a) Stimulation parameters define the effectiveness of burst spinal cord stimulation in a rat model of neuropathic pain. Neuromodulation 18: 1–8

    Article  PubMed  Google Scholar 

  • Crosby N, Weisshaar C, Smith J, Zeeman M, Goodman-Keiser M, Winkelstein B (2015b) Burst & tonic spinal cord stimulation differentially activate gabaergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 62: 1604–1613

    Article  PubMed  Google Scholar 

  • Cruccu G, Garcia-Larrea L, Hansson P, Keindl M, Lefaucheur JP, Paulus W, Taylor R, Tronnier V, Truini A, Attal N (2016) EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur J Neurol 23: 1489–1499

    Article  CAS  PubMed  Google Scholar 

  • Cuellar JM, Alataris K, Walker A, Yeomans DC, Antognini JF (2013) Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation 16: 318–327

    Article  PubMed  Google Scholar 

  • Cui J-G, Linderoth B, Meyerson BA (1996) Effects of spinal cord stimulation on touch-evoked allodynia involve GABAergic mechanisms. An experimental study in the mononeuropathic rat. Pain 66: 287–295

    Article  CAS  PubMed  Google Scholar 

  • Cui J-G, O´Connor WT, Ungerstedt U, Linderoth B, Meyerson BA (1997a) Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism. Pain 73: 87–95

    Article  CAS  PubMed  Google Scholar 

  • Cui J-G, Sollevi A, Linderoth B, Meyerson BAS (1997b) Adenosine receptor activation suppresses tactile hypersensitivity and potentiates spinal cord stimulation in mononeuropathic rats. Neurosci Lett 223: 173–176

    Article  CAS  PubMed  Google Scholar 

  • Deer TR, Levy RM, Kramer J, Poree L, Amirdelfan K, Grigsby E, Staats P, Burton AW, Burgher AH, Obray J, Scowcroft J, Golovac S, Kapural L, Paicius R, Kim C, Pope J, Yearwood T, Samuel S, McRoberts WP, Cassim H, Netherton M, Miller N, Schaufele M, Tavel E, Davis T, Davis K, Johnson L, Mekhail N (2016) Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial. Pain. 2016 Dec 23. doi: 10.1097/j.pain.0000000000000814. (Epub ahead of print)

  • DeJongste MJL, Haaksma J, Hautvast RW, Hillege HL, Meyler PW, Staal MJ, Sanderson JE, Lie KI (1994) Effects of spinal cord stimulation on daily life myocardial ischemias in patients with severe coronary artery disease. A prospective ambulatory ECG study. Br Heart J 71: 413–418

    Article  CAS  Google Scholar 

  • De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S (2013) Burst spinal cord stimulation for limb and back pain. World Neurosurg 80: 642–649

    Article  PubMed  Google Scholar 

  • De Ridder D, Lenders MW, De Vos CC, Dijkstra-Scholten C, Wolters R, Vancamp T, Van Looy P, Van Havenbergh T, Vanneste S (2015) A 2-center comparative study on tonic versus burst spinal cord stimulation: amount of responders and amount of pain suppression. Clin J Pain 31: 433–437

    Article  PubMed  Google Scholar 

  • De Ridder D, Vanneste S (2016) Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 19: 47–59

    Article  PubMed  Google Scholar 

  • de Vos CC, Meier K, Zaalberg PB, Nijhuis HJ, Duyvendak W, Vesper J, Enggaard TP, Lenders MW (2014) Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. Pain 155: 2426–2431

    Article  PubMed  Google Scholar 

  • Devor M (1999) Unexplained peculiarities of the dorsal root ganglion. Pain Suppl 6: S27–S35

    Article  Google Scholar 

  • Devulder J, van Suijlekom H, van Dongen R, Diwan S, Mekhail N, Van Kleef M, Huygen F (2011) Ischemic pain in the extremities and Raynauds phenomenom. Pain Practice 11: 483–491

    Article  PubMed  Google Scholar 

  • Diehm C, Schuster A, Allenberg JR, Darius H, Haberl R, Lange S, Pittrow D, von Stritzky B, Tepohl G, Trampisch HJ (2004) High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis 172: 95–105

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Ardell JL, Hua F, McAuley RJ, Sutherly K, Daniel JJ, Williams CA (2008) Modulation of cardiac ischemia-sensitive afferent neuron signaling by preemptive C2 spinal cord stimulation. Am J Physiol Reg Integr Comp Physil 294: R93–R101

    Article  CAS  Google Scholar 

  • Di Pede F, Lanza GA, Zuin G, Alfieri O, Rapati M, Romanò M, Circo A, Cardano P, Bellocci F, Santini M, Maseri A (2003) Investigators of the Prospective Italian Registry of SCS for Angina Pectoris. Immediate and long-term clinical outcome after spinal cord stimulation for refractory stable angina pectoris. Am J Cardiol 91: 951–955

    Article  PubMed  Google Scholar 

  • Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD) TASC-Working Group. Trans-Atlantic Inter-Society Consensus (TASC). Section D: chronic critical limb ischemia. J Vasc Surg 31: S183–S296

    Google Scholar 

  • Duggan AW, Foong FW (1985) Bicuculline and spinal inhibition produced by dorsal column stimulation in cat. Pain 22: 249–259

    Article  CAS  PubMed  Google Scholar 

  • Dubuisson D (1989) Effect of dorsal-column stimulation on gelatinosa and marginal neurons of the cat spinal cord. J Neurosurg 70: 257–265

    Article  CAS  PubMed  Google Scholar 

  • Eckert S, Horstkotte D (2009) Management of angina pectoris: the role of spinal cord stimulation. Am J Cardiovasc Drugs 9: 17–28

    Article  PubMed  Google Scholar 

  • Eckert S, Dongas A, Güldner H, Oepangat E, Horstkotte D (2006) Immediate and long-tem clinical outcome after spinal cord stimulation for refractory stable angina pectoris in patients with chronic pacemaker- and ICD-treatment. Eur Heart J 27 Suppl 6: 463S

    Google Scholar 

  • Eldabe S, Burger K, Moser H, Klase D, Schu S, Wahlstedt A, Vanderick B, Francois E, Kramer J, Subbaroyan J (2015) Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation 18: 610–616

    Article  PubMed  Google Scholar 

  • Eldabe S, Buchser E, Duarte RV (2016) Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med 17: 325–336

    PubMed  Google Scholar 

  • Eldabe S, Thomson S, Duarte R, Brookes M, deBelder M, Raphael J, Davies E, Taylor R (2016) The effectiveness and cost-effectiveness of spinal cord stimulation for refractory angina (RASCAL Study): a pilot randomized controlled trial. Neuromodulation 19: 60–70

    Article  PubMed  Google Scholar 

  • Eliasson T, Augustinsson LE, Mannheimer C (1996) Spinal cord stimulation in severe angina pectoris – presentation of current studies, indications and clinical experience. Pain 65: 169–179

    Article  CAS  PubMed  Google Scholar 

  • El-Khoury C, Hawwa, Baliki M, Atweh AF, Jabbur SJ, Saadè NE (2002) Attenuation of neuropathic pain by segmental and supraspinal activation of the dorsal column system in awake rats. Neuroscience 215: 196–208

    Google Scholar 

  • Erdine S, Ozyalcin NS, Cimen A, Celik M, Talu GK, Disci R (2007) Comparison of pulsed radiofrequency with conventional radiofrequency in the treatment of idiopathic trigeminal neuralgia. Eur J Pain 11: 309–313

    Article  PubMed  Google Scholar 

  • Fedder SL (1990) T2-ganglionectomy via limited costotransversectomy for minor causalgia. Spine 15: 269–270

    Article  CAS  PubMed  Google Scholar 

  • Feirabend HK, Choufoer H, Ploeger S, Holsheimer J, van Gool JD (2002) Morphometry of human superficial dorsal and dorsolateral column fibres: Significance to spinal cord stimulation. Brain 125: 1137–1149

    Article  CAS  PubMed  Google Scholar 

  • Fiume D, Palombi M, Sciacca V, Tamorri M (1989) Spinal cord stimulation (SCS) in peripheral ischemic pain. Pacing Clin Electrophysiol 12: 698–704

    Article  CAS  PubMed  Google Scholar 

  • Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, Coffey RJ (2004) Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology 100: 1582–1594

    Article  PubMed  Google Scholar 

  • Foreman RD, Linderoth B, Ardell JL, Barron KW, Chandler MJ, Hull SS Jr, TerHorst GJ, DeJongste MJ, Armour JA (2000) Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 47: 367–375

    Article  CAS  PubMed  Google Scholar 

  • Francaviglia N, Silvestro C, Maiello M, Bragazzi R, Bernucci C (1994) Spinal cord stimulation for the treatment of progressive systemic sclerosis and Raynaud's syndrome. Br J Neurosurg 8: 567–571

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wu M, Li L, Qin C, Farber JP, Linderoth B, Foreman RD (2010) Effects of spinal cord stimulation with „standard clinical“ and higher frequencies on peripheral blood flow in rats. Brain Res 1313: 53–61

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Larrea L, Sindou M, Mauguière F (1989) Nociceptive flexor reflexes during analgesic neurostimulation in man. Pain 39: 145–156

    Article  CAS  PubMed  Google Scholar 

  • Ghajar AW, Miles JB (1998) The differential effect of the level of spinal cord stimulation on patients with advanced peripheral vascular disease in the lower limbs. Br J Neurosurg 12: 402–408

    Article  CAS  PubMed  Google Scholar 

  • Gong WY, Johanek LM, Sluka KA (2016) A comparison of the effects of burst and tonic spinal cord stimulation on hyperalgesia and physical activity in an animal model of neuropathic pain. Anesth Analg 2016 Feb 8. [Epub ahead of print]

    Google Scholar 

  • Gonzalez-Darder JM, Canela P, Gonzalez-Martinez V (1991) High cervical spinal cord stimulation for unstable angina pectoris. Stereotact Funct Neurosurg 56: 20–27

    Article  CAS  PubMed  Google Scholar 

  • Greenwood-Van Meerveld B, Johnson AC, Foreman RD, Linderoth B (2003) Attenuation by spinal cord stimulation of a nociceptive reflex generated by colorectal distention in a rat model. Auton Neurosci 104: 17–24

    Article  PubMed  Google Scholar 

  • Greenwood-Van Meerveld B, Johnson AC, Foreman RD, Linderoth B (2005) Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Auton Neurosci 122: 69–76

    Article  PubMed  Google Scholar 

  • Grill WM, Cantrell MB, Robertson MS (2008) Antidromic propagation of action potentials in branched axons: implications fort he mechanisms of action for deep brain stimulation. J Comput Neurosci 24: 81–93

    Article  PubMed  Google Scholar 

  • Grundy D (2002) Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 1(Suppl. 1): i2–i5

    Article  Google Scholar 

  • Grundy D (2004) What activates visceral afferents? Gut 53(Suppl. 2): ii5–ii8

    Google Scholar 

  • Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, Raja SN (2010) Spinal cord stimulation-induced analgesia: electrical stimulation on dorsal horn and dorsal roots attenuates dorsal horn neuronal hyperexcitability in neuropathic rats. Anesthesiology 113: 1392–1405

    Article  PubMed  Google Scholar 

  • Gündüz ME, Schmutzler M, Asgari S (2016) Hat die Neurostimulation (SCS) bei Angina pectoris eine Zukunft? ZfaNch 1: 5–12

    Google Scholar 

  • Gybels J, Kupers R (1987) Central and peripheral electrical stimulation oft he nervous system in the treatment of chronic pain. Acta neurochir 38 (Suppl): 64–75

    Article  CAS  Google Scholar 

  • Han M, Huang RY, Du YM, Zhao ZQ, Zhang YQ (2011) Early intervention of ERK activation in the spinal cord can block initiation of peripheral nerve injury-induced neuropathic pain in rats. Sheng Li Xue Bao 63: 106–114

    CAS  PubMed  Google Scholar 

  • Handwerker HO, Iggo A, Zimmermann M (1975) Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1: 147–165

    Article  CAS  PubMed  Google Scholar 

  • Harke H, Rosenow E, Tronnier V, Fromme C, Deyne G, Gretenkort P, Buschmann D, Rohr P, Ladleif HU, von Glinski E, Schütze G, Schultze R, Keller HL, Kniesel B, Pfeifer R, Lux E (2003) Standardisierung invasiver neuromodulatorischer Verfahren. Schmerz 17: 44–50

    Article  CAS  PubMed  Google Scholar 

  • Harke H, Gretenkort P, Ladleif U, Rahman S (2005) Spinal cord stimulation in sympathetically maintained complex regional pain syndrome I with severe disability. A prospective clinical study. Eur J Pain 9: 363–373

    Article  PubMed  Google Scholar 

  • Hautvast RW, Brouwer J, DeJongste MJ, Lie KI (1998) Effect of spinal cord stimulation on heart rate variability and myocardial ischemia in patients with chronic intractable angina pectoris – a prospective amulatiry electrocardiographic study. Clin Cardiol 21: 33–38

    Article  CAS  PubMed  Google Scholar 

  • Herz DA, Looman JE, Ford RD, Gostine ML, Davis FN, VandenBerg WC (1993) Second thoracic sympathetic ganglionectomy in sympathetically maintained pain. J Pain Symptom Manage. 8: 483–491

    Article  CAS  PubMed  Google Scholar 

  • Holsheimer J (2002) Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation 5: 25–31

    Article  PubMed  Google Scholar 

  • Horsch S, Claeys L (1994a) (Hrsg) Spinal cord stimulation: an innovative method in the treatment of PVD, Darmstadt, Steinkopff Verlag

    Google Scholar 

  • Horsch S, Claeys L (1994b) Epidural spinal cord stimulation in the treatment of severe peripheral arterial occlusive disease. Ann Vasc Surg 8: 468–474

    Article  CAS  PubMed  Google Scholar 

  • Horsch S, Claeys L (1995) (Hrsg) Spinal cord stimulation: an innovative method in the treatment of PVD and Angina, Darmstadt, Steinkopff Verlag 1995

    Google Scholar 

  • Hu P, McLachlan EM (2002) Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience 112: 23–38

    Article  CAS  PubMed  Google Scholar 

  • Ignelzi RJ, Nyquist JK (1979) Excitability changes in peripheral nerve fibers after repetitive electrical stimulation: implications in pain modulation. J Neurosurg 51: 824–833

    Article  CAS  PubMed  Google Scholar 

  • Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ, Miller JM, Zipes DP (2005) Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111: 3217–3220

    Article  PubMed  Google Scholar 

  • Iyer R, Gnanadurai TV, Forsey P (1998) Management of cardiac pacemaker in a patient with spinal cord stimulator implant. Pain 74: 333–335

    Article  CAS  PubMed  Google Scholar 

  • Jackson M, Simpson KH (2004) Spinal cord stimulation in a patient with persistent oesophageal pain. Pain 112: 406–408

    Article  PubMed  Google Scholar 

  • Jacobs MJHM, Jörning PJG, Beckers RCY, Ubbink DT, van Kleef M, Slaaf DWet al (1990) Foot salvage and improvement of microvascular blood flow as a result of epidural spinal cord electrical stimulation. J Vasc Surg 3: 354–360

    Google Scholar 

  • Janssen SP, Gerard S, Raijmakers ME, Truin M, Van Kleef M, Joosten EA (2012) Decreased intracellular GABA levels contribute to spinal cord stimulation-induced analgesia in rats suffering from painful peripheral neuropathy: the role of KCC2 and GABA (A)receptor mediated inhibition. Neurochem Int 60: 21–30

    Article  CAS  PubMed  Google Scholar 

  • Jessurun GAJ, DeJongste MJL, Blanksma PK (1996) Current views on neurostimulation inm the treatment of cardiac ischemic syndromes. Pain 66: 109–116

    Article  CAS  PubMed  Google Scholar 

  • Jivegard LE, Augustinsson LE, Holm J, Risberg B, Ortenwall P (1995) Effects of spinal cord stimulation (SCS) in patients with inoperable severe lower limb ischaemia: a prospective randomized controlled study. Eur J Vasc Endovasc Surg 9: 421–425

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Mutagi H, Raphael J (2006) Spinal cord stimulation for relief of abdominal pain in two patients with familial Mediterranean fever. Br J Anaesth 97: 866–868

    Article  CAS  PubMed  Google Scholar 

  • Kapural L, Cywinski JB, Sparks DA (2011) Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation 14: 423–427

    Article  PubMed  Google Scholar 

  • Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, Amirdelfan K, Morgan DM, Brown LL, Yearwood TL, Bundschu R, Burton AW, Yang T, Benyamin R, Burgher AH (2015) Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology 123: 851–860

    Article  PubMed  Google Scholar 

  • Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, Amirdelfan K, Morgan DM, Yearwood TL, Bundschu R, Yang T, Benyamin R, Burgher AH (2016) Comparison of 10-kHz high-frequency and traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: 24-month results from a multicenter, randomized, controlled pivotal trial. Neurosurgery 79: 667–677

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemler MA, Barendse GA, van Kleef M, de Vet HC, Rijks CP, Furnée CA, van den Wildenberg FA (2000) Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med 343: 618–624

    Article  CAS  PubMed  Google Scholar 

  • Kemler MA, Reulen JP, Barendse GA, van Kleef M, de Vet HC, van den Wildenberg FA (2001) Impact of spinal cord stimulation on sensory characteristics in complex regional pain syndrome type I: a randomized trial. Anesthesiology 95: 72–80

    Article  CAS  PubMed  Google Scholar 

  • Khan YN, Raza SS, Khan EA (2005) Application of spinal cord stimulation for the treatment of abdominal visceral pain syndromes: case reports. Neuromodulation 8: 16–29

    Article  Google Scholar 

  • Kilgore KL, Bhadra N (2004) Nerve conduction block utilising high-frequency alternating current. Med Biol Eng Comput 42: 394–406

    Article  CAS  PubMed  Google Scholar 

  • Kilgore KL, Bhadra N (2014) Reverible nerve conduction block using kilohertz frequency alternating current. 17: 242–254

    Google Scholar 

  • Kim JK, Hong SH, Kim MH, Lee JK (2009) Spinal cord stimulation for intractable visceral pain due to chronic pancreatitis. J Korean Neurosurg Soc 46: 165–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinfe TM, Pintea B, Link C, Roeske S, Güresir E, Güresir Á, Vatter H (2016) High frequency (10 kHz) or burst spinal cord stimulation in failed back surgery syndrome patients with predominant back pain: preliminary data from a prospective observational study. Neuromodulation 19: 268–275

    Article  PubMed  Google Scholar 

  • Kinfe TM, Muhammad S, Link C, Roeske S, Chaudhry SR, Yearwood TL (2017) Burst spinal cord stimulation increases peripheral antineuroinflammatory interleukin 10 levels in failed back surgery syndrome patients with predominant back pain. Neuromodulation. 2017 Feb 13. doi: 10.1111/ner.12586. (Epub ahead)

  • Kingma JG Jr., Linderoth B, Ardell JL, Armour JA, DeJongster MJ, Foreman RD (2001) Neuromodulation therapy does not influence blood flow distribution or left ventricular dynamics during acute myocardial ischemia. Auton Neurosci 91: 47–54

    Article  PubMed  Google Scholar 

  • Kishima H, Saitoh Y, Oshino S, Hosomi K, Ali M, Maruo T, Hirata M, Goto T, Yanagisawa T, Sumitani M, Osaki Y, Hatazawa J, Yoshimine T (2010) Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. Neuroimage 49: 2564–2569

    Article  PubMed  Google Scholar 

  • Klomp HM, Spincemaille GH, Steyerberg EW, Habbema JD, van Urk H (1999) Spinal-cord stimulation in critical limb ischaemia: a randomised trial. ESES Study Group. Lancet 353: 1040–1044

    CAS  Google Scholar 

  • Koh W, Choi SS, Karm MH, Suh JH, Leem JG, Lee JD, Kim YK, Shin J (2015) Treatment of chronic lumbosacral radicular pain using adjuvant pulsed radiofrequency: a randomized controlled study. Pain Med 16: 432–441

    Article  PubMed  Google Scholar 

  • Koopmeiners AS, Mueller S, Kramer J, Hogan QH (2013) Effect of electrical field stimulation on dorsal root ganglion neuronal function. Neuromodulation 16: 304–311

    Article  PubMed  Google Scholar 

  • Kramer J, Liem L, Russo M, Smet I, Van Buyten JP, Huygen F (2015) Lack of body positional effects on paresthesias when stimulating the dorsal root ganglion (DRG) in the treatment of chronic pain. Neuromodulation 18: 50–57

    Article  PubMed  Google Scholar 

  • Krames E, Mousad DG (2004) Spinal cord stimulation reverses pain and diarrheal episodes of irritable bowel syndrome: a case report. Neuromodulation 7: 82

    Article  PubMed  Google Scholar 

  • Krames ES (2014) The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med 15: 1669–1665

    Article  PubMed  Google Scholar 

  • Kriek N, Groeneweg JG, Stronks DL, de Ridder D, Huygen FJ (2017) Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: A multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur J Pain 21: 507–519

    Article  CAS  PubMed  Google Scholar 

  • Kroll HR, Kim D, Danic MJ, Sankey SS, Gariwala M, Brown M (2008) A randomized, double-blind, prospective study comparing the efficacy of continuous versus pulsed radiofrequency in the treatment of lumbar facet syndrome. J Clin Anesth 20: 534–537

    Article  PubMed  Google Scholar 

  • Kumar K, Toth C, Nath RK, Verma AK, Burgess JJ (1997) Improvement of limb circulation in peripheral vascular disease using epidural spinal cord stimulation: a prospective study. J Neurosurg 86: 662–669

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Hunter G, Demeria D (2006) Spinal cord stimulation in treatment of chronic benign pain: challenges in treatment planning and present status, a 22-year experience. Neurosurgery 58: 481–496

    Article  PubMed  Google Scholar 

  • Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O'Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB (2007) Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 132: 179–188

    Article  PubMed  Google Scholar 

  • Larsson M, Arvidsson S, Ekman C, Bayati A (2003) A model for chronic quantitative studies of colocolorectal sensitivity using balloon distension in conscious mice – effects of opioid receptor agonists. Neurogastroenterol. Motil. 15: 371–381

    Article  CAS  PubMed  Google Scholar 

  • Leibson CL, Ransom JE, Olson W, Zimmerman BR, O´Fallon WM, Palumbo PJ (2004) Peripheral arterial disease, diabetes, and mortality. Diabetes Care 27: 2843–2849

    Article  PubMed  Google Scholar 

  • Lempka SF, McIntyre CC, Kilgore KL, Machado AG (2015) Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 122: 1362–1376

    Article  CAS  PubMed  Google Scholar 

  • Leriche R (1939) The surgery of pain. Bailliere, Tindal und Cox, London, 1939

    Google Scholar 

  • Levy R, Henderson J, Slavin K, Simpson BA, Barolat G, Shipley J, North R (2011) Incidence and avoidance of neurologic complications with paddle type spinal cord stimulation leads. Neuromodulation 14: 412–422

    Article  PubMed  Google Scholar 

  • Liem L, Russo M, Huygen FJ, Van Buyten JP, Smet I, Verrills P, Cousins M, Brooker C, Levy R, Deer T, Kramer J (2015) One-year outcomes of spinal cord stimulation of the dorsal root ganglion in the treatment of chronic neuropathic pain. Neuromodulation 18: 41–48

    Article  PubMed  Google Scholar 

  • Lin ML, Lin WT, Huang RY, Chen TC, Huang SH, Chang CH, Tsai SY, Chiu HW, Yeh GC, Lin CW, Wen YR (2014) Pulsed radiofrequency inhibited activation of spinal mitogen-activated protein kinases and ameliorated early neuropathic pain in rats. Eur J Pain 18: 659–670

    Article  CAS  PubMed  Google Scholar 

  • Lin YT, Ro LS, Wang HL, Chen JC (2011) Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. J Neuroinflammation 8: 126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind G, Meyerson BA, Winter J, Linderoth B (2004) Intrathecal baclofen as adjuvant therapy to enhance the effect of spinal cord stimulation in neuropathic pain. Eur J Pain 8: 377–384

    Article  CAS  PubMed  Google Scholar 

  • Lind G, Schechtmann G, Winter J, Linderoth B (2008) Baclofen-enhanced spinal cord stimulation and intrathecal baclofen alone for neuropathic pain. Long-term outcome of a pilot study. Eur J Pain 12: 132–136

    Article  CAS  PubMed  Google Scholar 

  • Lindblom U, Meyerson BA (1975) Influence on touch, vibration and cutaneous pain of dorsal column simulation in man. Pain 1: 257–270

    Article  CAS  PubMed  Google Scholar 

  • Linderoth B, Fedorczak I, Meyerson BA (1991) Peripheral vasodilatation after spinal cord stimulation: animal studies of putative effector mechanisms. Neurosurgery 28: 22–30

    Article  Google Scholar 

  • Linderoth B, Gazelius B, Franck J, Brodin E (1992) Dorsal column stimulation induces release of serotonin and substance P in the cat dorsal horn. Neurosurgery 31: 289–296

    Article  CAS  PubMed  Google Scholar 

  • Linderoth B, Herregodts P, Meyerson BA (1994) Sympathetic mediation of peripheral vasodilation induced by spinal cord stimulation: animal studies of the role of cholinergic and adrenergic receptor subtypes. Neurosurgery 35: 711–719

    Article  CAS  PubMed  Google Scholar 

  • Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, Ujhelyi M, Mullen T, Das M, Zipes DP (2009) Spinal cord stimulation improves ventricular unction and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120: 286–294

    Article  PubMed  Google Scholar 

  • Mannheimer C, Carlsson CA, Emanuelsson H, Vedin A, Waagstein F, Wilhelmsson C (1985) The effects of transcutaneous electrical nerve stimulation in patients with severe angina pectoris. Circulation 71: 308–316

    Article  CAS  PubMed  Google Scholar 

  • Mannheimer C, Eliassson T, Andersson B, Bergh CH (1993) Effects of spoinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. Br Med J 307: 477–480

    Article  CAS  Google Scholar 

  • Mannheimer C, Eliasson T, Augustinsson LE, Blomstrand C, Emanuelsson H, Larsson S, Norrsell H, Hjalmarsson A (1998) Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris: the ESBY study. Circulation 97: 1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Meller ST, Gebhart GF (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48: 501–521

    Article  CAS  PubMed  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150: 971–979

    Article  CAS  PubMed  Google Scholar 

  • Mertz H, Naliboff B, Munakata J, Niazi N, Mayer EA (1995) Altered colorectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology 109: 40–52

    Article  CAS  PubMed  Google Scholar 

  • Meyerson BA, Ren B, Herregodts P, Linderoth B (1995) Spinal cord stimulation in animal models of mononeuropathy: effects on the withdrawal response and flexor reflex. Pain 61: 229–243

    Article  CAS  PubMed  Google Scholar 

  • Mikeladze G, Espinal R, Finnegan R, Routon J, Martin D (2003) Pulsed radiofrequency application in treatment of chronic zygapophyseal joint pain. Spine J 3: 360–362

    Article  PubMed  Google Scholar 

  • Miller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B (2016) Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 19: 373–384

    Article  PubMed  Google Scholar 

  • Mingoli A, Sciacca V, Tamorri M, Fiume D, Sapienza P (1993) Clinical results of epidural spinal cord electrical stimulation in patients affected with limb-threatening chronic arterial obstructive disease. Angiology 44: 21–25

    Article  CAS  PubMed  Google Scholar 

  • Moens M, Sunaert S, Marien P, Brouns R, De Smedt A, Droogmans S, Van Schuerbeek P, Peeters R, Poelaert J, Nuttin B (2012) Spinal cord stimulation modulates cerebral function: an fMRI study. Neuroradiology 54: 1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Murphy DF, Giles KE (1987) Dorsal column stimulation for pain relief from intractable angina pectoris. Pain 28: 365–368

    Article  CAS  PubMed  Google Scholar 

  • Nagamachi S, Fujita S, Nishii R, Futami S, Wakamatsu H, Yano T,Kodama T, Tamura S, Kunitake A, Uno T, Takasaki M (2006) Alteration of regional blood flow in patients with chronic pain-evaluation before and after epidural spinal cord stimulation. Ann Nucl Med 20: 303–310

    Article  PubMed  Google Scholar 

  • Nashold BS Jr., Friedman H (1972) Dorsal column stimulation for control of pain. Preliminary report of 30 patients. J neurosurg 36: 590–597

    Article  PubMed  Google Scholar 

  • Nashold BS Jr., Goldner JL, Mullen JB, Bright DS (1982) Long-term pain control by direct nerve stimulation. J Bone Joint Surg Am 64: 1–10

    Article  PubMed  Google Scholar 

  • Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45 Suppl S: S5–67

    Article  PubMed  Google Scholar 

  • Norrsell H, Pilhall M, Eliasson T, Mannheimer C (2000) Effects of spinal cord stimulation and coronary artery bypass grafting on myocardial ischemia and heart rate variability: further results from the ESBY study. Cardiology 94: 12–18

    Article  CAS  PubMed  Google Scholar 

  • North JM, Hong KJ, Cho PY (2016) Clinical outcomes of 1 kHz subperception spinal cord stimulation in implanted patients with failed paresthesia-based stimulation: results of a prospective randomized controlled trial. Neuromodulation 19: 731–737

    Article  PubMed  Google Scholar 

  • North RB, Kidd DH, Farrokhi F, Piantadosi SA (2005) Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery 56: 98–106

    Article  PubMed  Google Scholar 

  • Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, Rosato M, Bovet N, West S, Bovy M, Rutschmann B, Gulve A, Garner F, Buchser E (2013) Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation 16: 363–369

    Article  PubMed  Google Scholar 

  • Pinto V, Szucs P, Lima D, Safronov BV (2010) Multisegmental A{delta}- and C-fiber input to neurons in lamina I and the lateral spinal nucleus. J Neurosci 30: 2384–2395

    Article  CAS  PubMed  Google Scholar 

  • Odenstedt J, Linderoth B, Bergfeldt L, Ekre O, Grip L, Mannheimer C, Andréll P (2011) Spinal cord stimulation effects on myocardial ischemia, infarct size ventricular arrhythmia, and non-invasive electrophysiology in a porcine ischemia-reperfusion model. Heart Rhythm 8: 892–898

    Article  PubMed  Google Scholar 

  • Orchard TJ Strandness DE Jr (1993) Assessment of peripheral vascular disease in diabetes. Report and recommendations of an international workshop. Circulation 88: 819–828

    Article  CAS  PubMed  Google Scholar 

  • Ozsoylar O, Akçali D, Cizmeci P, Babacan A, Cahana A, Bolay H (2008) Percutaneous pulsed radiofrequency reduces mechanical allodynia in a neuropathic pain model. Anesth Analg 107: 1406–1411

    Article  PubMed  Google Scholar 

  • Pan X, Bao H, Si Y, Xu C, Chen H, Gao X, Xie X, Xu Y, Sun F, Zeng L (2016) Spinal Cord Stimulation for Refractory Angina Pectoris: A Systematic Review and Meta-analysis. Clin J Pain 2016 Nov 21. [Epub ahead of print]

    Google Scholar 

  • Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, Rosato M, Bovet N, West S, Bovy M, Rutschmann B, Gulve A, Garner F, Buchser E (2013) Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation 16: 363–369

    Article  PubMed  Google Scholar 

  • Petrakis IE, Sciacca V (1999) Transcutaneous oxygen tension (TcPO2) in the testing period of spinal cord stimulation (SCS) in critical limb ischemia of the lower extremities. Int Surg 84:122–128

    CAS  PubMed  Google Scholar 

  • Pluijms W, Huygen F, Cheng J, Mekhail N, van Kleef M, Van Zundert J, van Dongen R (2011) Evidence-based interventional pain medicine according to clinical diagnoses. 18. Painful diabetic polyneuropathy. Pain Practice 11: 191–198

    Article  PubMed  Google Scholar 

  • Pluijms WA, Slangen R, Joosten EA, Kessels AG, Merkies IS, Schaper NC, Faber CG, van Kleef M (2011) Electrical spinal cord stimulation in painful diabetic polyneuropathy, a systematic review on treatment efficacy and safety. Eur J Pain 15: 783–788

    Article  PubMed  Google Scholar 

  • Podhajsky RJ, Sekiguchi Y, Kikuchi S, Myers RR (2005) The histologic effects of pulsed and continuous radiofrequency lesions at 42 degrees C to rat dorsal root ganglion and sciatic nerve. Spine 30: 1008–1013

    Article  PubMed  Google Scholar 

  • Posserud I, Ersryd A, Simren M (2006) Functional findings in irritable bowel syndrome. World J Gastroenterol 12:2830–2888

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin C, Lehew RT, Khan KA, Wienecke GM, Foreman RD (2007) Spinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats. Neurosci Res. 58: 58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Farber JP Linderoth B, Shahid A, Foreman RD (2008) Neuromodulation of thoracic intraspinal visceroreceptive transmission by electrical stimulation of spinal cord column and somatic afferents in rats. J Pain 2008: 9: 71–78

    Article  Google Scholar 

  • Rana MV, Knezevic NN (2013) Tripolar Spinal Cord Stimulation for the treatment of abdominal pain associated with Irritable Bowel Syndrome. Neuromodulation 16: 73–77

    Article  PubMed  Google Scholar 

  • Rasche D, Siebert S, Stippich C, Kress B, Nennig E, Sartor K, Tronnier, VM (2005) Epidurale Rückenmarkstimulation bei Postnukleotomiesyndrom. Pilotstudie zur Therapieevaluation mit der funktionellen Magnetresonanztomographie (f-MRT). Schmerz 19: 497–505

    Article  CAS  PubMed  Google Scholar 

  • Rasche D, Ruppolt M, Kress B, Unterberg A, Tronnier V (2006) Quantitative sensory testing in patients with chronic unilateral neuropathic pain and active spinal cord stimulation. Neuromodulation 9: 239–247

    Article  PubMed  Google Scholar 

  • Reddy CG, Dalm BD, Flouty OE, Gillies GT, Howard MA 3rd, Brennan TJ (2016) Comparison of Conventional and Kilohertz Frequency Epidural Stimulation in Patients Undergoing Trialing for Spinal Cord Stimulation: Clinical Considerations. World Neurosurg 88: 586–591

    Article  PubMed  Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127: 108–118

    Article  CAS  PubMed  Google Scholar 

  • Russo M, Van Buyten JP (2015) 10-kHz High-Frequency SCS Therapy: A Clinical Summary. Pain Med. 16: 934–942

    Article  PubMed  Google Scholar 

  • Russo M, Verrills P, Mitchell B, Salmon J, Barnard A, Santarelli D (2016) High Frequency Spinal Cord Stimulation at 10 kHz for the Treatment of Chronic Pain: 6-Month Australian Clinical Experience. Pain Physician 19: 267–280

    PubMed  Google Scholar 

  • Saadè NE, Atweh AF, Tabet MS, Jabbur SJ (1985) Inhibition of nociceptive withdrawal flexion reflexes through a dorsal column-brainstem-spinal loop. Brain Res 335: 306–308

    Article  PubMed  Google Scholar 

  • Saadè NE, Tabet MS, Soueidan SA, Bitar M, Atweh AF, Jabbur SJ (1986) Supraspinal modulation of nociception in awake rats by stimulation of the dorsal column nuclei. Brain Res 369: 307–310

    Article  PubMed  Google Scholar 

  • Safa-Tisseront V, Thormann F, Malassiné P, Henry M, Riou B, Coriat P, Seebacher J (2001) Effectiveness of epidural blood patch in the management of post-dural puncture headache. Anesthesiology 95: 334–339

    Article  CAS  PubMed  Google Scholar 

  • Sanada S, Kitakaze M (2004) Ischemic preconditioning. Emerging evidence, controversy, And translational trials. Int J Cardiol 97: 263–276

    Article  PubMed  Google Scholar 

  • Schechtmann G, Song Z, Ultenius Z, Meyerson BA, Linderoth B (2008) Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain 139: 136–145

    Article  CAS  PubMed  Google Scholar 

  • Schechtmann G, Wallin J, Meyerson BA, Linderoth B (2004) Intrathecal clonidine potentiates suppression of tactile hypersensitivity by spinal cord stimulation in a model of neuropathy. Anesth Analg 99: 135–139

    Article  CAS  PubMed  Google Scholar 

  • Schimpf R, Wolpert C, Herwig S, Schneider C, Esmailzadeh B, Lüderitz B (2003) Potential device interaction of a dual chamber implantable cardioverter defibrillator in a patient with continuous spinal cord stimulation. Europace 5: 397–402

    Google Scholar 

  • Schlaier JR, Eichhammer P, Langguth B, Doenitz C, Binder H, Hajak G, Brawanski A (2007) Effects of spinal cord stimulation on cortical excitability in patients with chronic neuropathic pain: a pilot study. Eur J Pain 11: 863–868

    Article  PubMed  Google Scholar 

  • Schu S, Slotty PJ, Bara G, von Knop M, Edgar D, Vesper J (2014) A prospective, randomized, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome. Neuromodulation 17: 443–450

    Article  PubMed  Google Scholar 

  • Schu S, Gulve A, ElDabe S, Baranidharan G, Wolf K, Demmel W, Rasche D, Sharma M, Klase D, Jahnichen G, Wahlstedt A, Nijhuis H, Liem L (2015) Spinal cord stimulation of the dorsal root ganglion for groin pain-a retrospective review. Pain Pract 15: 293–299

    Article  PubMed  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioural model of neuropathic pain disorders produced in rats by partial sciatic nerve inhjury. Pain 43: 205–218

    Article  CAS  PubMed  Google Scholar 

  • Shealy CN, Mortimer JT, Resnick JB (1967a) Electrical inhibition on pain by stimulation of the dorsal columns. Anesth Analg 46: 489–491

    CAS  PubMed  Google Scholar 

  • Shealy CN, Taslitz N, Mortimer JT, Becker DP (1967b) Electrical inhibition on pain: Experimental evaluation. Anesth Analg 46: 299–305

    CAS  PubMed  Google Scholar 

  • Shechter R, Yang F, Xu, Q, Cheong Y-K, He S-Q, Sdrulla A, Carteret AF, Wacnik PW, Dong X, Meyer RA, Raja SN, Guan Y (2013) Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology 119: 422–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Shetter AG Atkinson JR (1977) Dorsal column stimulation: its effect on bulboreticular unit activity by noxious stimuli. Exp Neurol 54: 185–198

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos TT, Kraemer J, Nagda JV, Aner M, Bajwa ZH (2008) Response to pulsed and continuous radiofrequency lesioning of the dorsal root ganglion and segmental nerves in patients with chronic lumbar radicular pain. Pain Physician 11: 137–144

    PubMed  Google Scholar 

  • Simopoulos TT, Sharma S, Aner M, Gill JS (2016) The Incidence and Management of Postdural Puncture Headache in Patients Undergoing Percutaneous Lead Placement for Spinal Cord Stimulation. Neuromodulation 19: 738–743

    Article  PubMed  Google Scholar 

  • Slangen R, Schaper NC, Faber CG, Joosten EA, Dirksen CD, van Dongen RT, Kessels AG, van Kleef M (2014) Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: a prospective two-center randomized controlled trial. Diabetes Care 37: 3016–3024

    Article  PubMed  Google Scholar 

  • Slavin KV, North RB, Deer TR, Staats P, Davis K, Diaz R (2016) Tonic and burst spinal cord stimulation waveforms for the treatment of chronic, intractable pain: study protocol for a randomized controlled trial. Trials 17: 569

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith H, Youn Y, Pilitsis JG (2015) Successful use of high-frequency spinal cord stimulation following traditional treatment failure. Stereotact Funct Neurosurg 93: 190–193

    Article  PubMed  Google Scholar 

  • Smithwick RH (1940) The problem of producing complete and lasting sympathetic denervation of the upper extremity by preganglionic section. Ann Surg 112: 1085–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Chen BN, Zagorodnyuk VP, Lynn PA, Blackshaw LA, Grundy D, Brunsden AM, Costa M, Brookes SJ (2009) Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137: 274–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Z, Meyerson BA, Linderoth B (2008) Muscarinic receptor activation potentiates the effect of spinal cord stimulation on pain-related behavior in rats with mononeuropathyy. Neurosci Lett 436: 7–12

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Ultenius C, Meyerson BA, Linderoth B (2009) Pain relief by spinal cord stimulation involves serotoniergic mechanisms. An experimental study in a rat model of mononeuropathy. Pain 147: 241–248

    CAS  Google Scholar 

  • Song Z, Meyerson BA, Linderoth B (2011) Spinal 5-HT receptors that contribute to the pain-relieving effects of pinal cord stimulation in a rat model of neuropathy. Pain 152: 1666–1672

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Ansah OB, Meyerson BA, Pertovaara A, Linderoth B (2013) The rostroventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain. Neuroscience 247: 134–144

    Article  CAS  PubMed  Google Scholar 

  • Southerland EM, Milhorn DM Foreman RD Linderoth B, DeJongste MJ, Armour JA, Subramanian V, Singh M, Singh K, Ardell JL (2007) Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am J Physiol Heart Circ Physiol 292: H311–H317

    Article  CAS  PubMed  Google Scholar 

  • Spencer NJ, Kerrin A, Singer CA, Hennig GW, Gerthoffer WT, McDonnell O (2008) Identification of capsaicin-sensitive colorectal mechanoreceptors activated by colorectal distension in mice. Neuroscience 153: 518–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiller CO, Cui J-G, O´Connor WT, Brodin E, Meyerson BA, Linderoth B (1996) Release of GABA in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery 39: 367–375

    Article  CAS  PubMed  Google Scholar 

  • Struijk JJ, Holsheimer J, van der Heide GG, Boom HB (1992) Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching. IEEE Trans Biomed Eng 39: 903–912

    Article  CAS  PubMed  Google Scholar 

  • Sweet J, Badjatiya A, Tan D, Miller J (2016) Paresthesia-Free High-Density Spinal Cord Stimulation for Postlaminectomy Syndrome in a Prescreened Population: A Prospective Case Series. Neuromodulation 19: 260–267

    Article  PubMed  Google Scholar 

  • Sweet WH, Wepsic JG (1968) Treatment of chronic pain by stimulation of fibers of primary afferent neurons. Trans Am Neurol Assoc 93: 103–107

    CAS  PubMed  Google Scholar 

  • Tallis RC, Illis LS, Sedgwick EM, Hardwidge C, Garfield JS (1983) Spinal cord stimulation in peripheral vascular disease. J Neurol Neurosurg Psychiatry 46: 478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Yamaga M, Tateyama S, Uno T, Tsuneyoshi I, Takasaki M (2010) The effect of pulsed radiofrequency current on mechanical allodynia induced with resiniferatoxin in rats. Anesth Analg 111: 784–790

    Article  PubMed  Google Scholar 

  • Tanaka S, Barron KW, Chandler MJ, Linderoth B, Foreman RD (2003) Local cooling alters neural mechanisms producing changes in peripheral blood flow by spinal cord stimulation. Auton Neurosci 104: 117–127

    Article  PubMed  Google Scholar 

  • Taylor RS, Van Buyten JP, Buchser E (2005) Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors. Spine 30: 152–160

    Article  PubMed  Google Scholar 

  • Taylor RS, Van Buyten JP, Buchser E (2006) Spinal cord stimulation for complex regional pain syndrome: a systematic review of the clinical and cost-effectiveness literature and assessment of prognostic factors. Eur J Pain 10: 91–101

    Article  PubMed  Google Scholar 

  • Taylor RS, De Vries J, Buchser E, Dejongste MJ (2009) Spinal cord stimulation in the treatment of refractory angina: systematic review and meta-analysis of randomised controlled trials. BMC Cardiovasc Disord 9: 13

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedesco A, D'Addato M (2004) Spinal cord stimulation for patients with critical limb ischemia: immediate and long-term clinical outcome from the prospective italian register. Neuromodulation 7: 97–102

    Article  PubMed  Google Scholar 

  • Tekin I, Mirzai H, Ok G, Erbuyun K, Vatansever D (2007) A comparison of conventional and pulsed radiofrequency denervation in the treatment of chronic facet joint pain. Clin J Pain 23: 524–529

    Article  PubMed  Google Scholar 

  • Tesfaye S, Watt J, Benbow SJ, Pang KA, Miles J, MacFarlane IA (1996) Electrical spinal cord stimulation for painful diabetic peripheral neuropathy. Lancet 348: 1698–1701

    Article  CAS  PubMed  Google Scholar 

  • Theres H, Eddicks S, Schenk M, Maier-Hauff K, Spies C, Baumann G (2003) Neurostimulation zur Behandlung der refraktären Angina pectoris. Dtsch Ärztebl 100: 997–1003

    Google Scholar 

  • Tiede J, Brown L, Gekht G, Vallejo R, Yearwood T, Morgan D (2013) Novel spinal cord stimulation parameters in patients with predominant back pain. Neuromodulation 16: 370–375

    Article  PubMed  Google Scholar 

  • Tronnier V (2013) Interventionelle Verfahren, in: Baron, Koppert, Strumpf, Willweber.-Strumpf (Hrsg), Praktische Schmerzmedizin, 3. Aufl, Springer Heidelberg, S. 137–161, S.146

    Google Scholar 

  • Tronnier V (2016) SCS als therapeutische Option beim Postnukleotomiesyndrom. Der Orthopäde. 45(9):738–743. doi: 10.1007/s00132-016-3310-5.

  • Tronnier V, Baron R, Birklein F, Eckert S, Harke H, Horstkotte D, Hügler P, Hüppe M, Kniesel B, Maier C, Schütze G, Thoma R, Treede RD, Vadokas V (2011) Arbeitsgruppe zur Erstellung der S3-Leitlinie. Epidurale Rückenmarkstimulation zur Therapie chronischer Schmerzen. Schmerz 25: 484–492

    CAS  Google Scholar 

  • Tronnier V, Richter HP, Winkelmüller W (2013) Entwicklung der epiduralen Rückenmarkstimulation – 40 Jahre seit der Erstimplantation in Deutschland. Schmerz 27(4): 401–408

    Article  CAS  PubMed  Google Scholar 

  • Ubbink DT, Spincemaille GH, Prins MH, Reneman RS, Jacobs MJ (1999) Microcirculatory investigations to determine the effect of spinal cord stimulation for critical leg ischemia: the Dutch multicenter randomized controlled trial. J Vasc Surg 30: 370–371

    Article  Google Scholar 

  • Ubbink DT, Vermeulen H, Spincemaille GH, Gersbach PA, Berg P, Amann W (2004) Systematic review and meta-analysis of controlled trials assessing spinal cord stimulation for inoperable critical leg ischaemia. Br J Surg 91: 948–955

    Article  CAS  PubMed  Google Scholar 

  • Ubbink DT, Vermeulen H (2013) Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. Cochrane Database Syst Rev Feb 28: 2:CD004001. doi: 10.1002/14651858.CD004001.pub3

  • Urban BJ, Nashold BS Jr (1982) Combined epidural and peripheral nerve stimulation for relief of pain. Description of technique and preliminary results. J Neurosurg 57: 365–369

    CAS  PubMed  Google Scholar 

  • Van Boxem K, van Bilsen J, de Meij N, Herrler A, Kessels F, Van Zundert J, van Kleef M (2011) Pulsed radiofrequency treatment adjacent to the lumbar dorsal root ganglion for the management of lumbosacral radicular syndrome: a clinical audit. Pain Med 12: 1322–1330

    Article  PubMed  Google Scholar 

  • Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T (2013) High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation 16: 59–65

    Article  PubMed  Google Scholar 

  • Van Buyten JP, Smet I, Liem L, Russo M, Huygen F (2015) Stimulation of dorsal root ganglia for the management of complex regional pain syndrome: a prospective case series. Pain Pract 15: 208–216

    Article  PubMed  Google Scholar 

  • Van Havenbergh T, Vancamp T, Van Looy P, Vanneste S, De Ridder D (2015) Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation 18: 9–12

    Article  PubMed  Google Scholar 

  • Van Zundert J, Patijn J, Kessels A, Lamé I, van Suijlekom H, van Kleef M (2007) Pulsed radiofrequency adjacent to the cervical dorsal root ganglion in chronic cervical radicular pain: a double blind sham controlled randomized clinical trial. Pain 127: 173–182

    Article  PubMed  Google Scholar 

  • de Vos CC, Bom MJ, Vanneste S, Lenders MW, de Ridder D (2014) Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 17: 152–159

    Article  PubMed  Google Scholar 

  • de Vos CC, Meier K, Zaalberg PB, Nijhuis HJ, Duyvendak W, Vesper J, Enggaard TP, Lenders MW (2014) Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. Pain 155: 2426–2431

    Article  PubMed  Google Scholar 

  • Wall PD, Gutnick M (1974) Properties of afferent nerve impulses originating from a neuroma. Nature 248: 740–743

    Article  CAS  PubMed  Google Scholar 

  • Wall PD, Sweet WH (1967) Temporal abolition of pain in man. Science 155: 108–109

    Article  CAS  PubMed  Google Scholar 

  • Wallin J, Fiskå A, Tjølsen A, Linderoth B, Hole K (2003) Spinal cord stimulation inhibits long-term potentiation of spinal wide dynamic range neurons. Brain Res 973: 39–43

    Article  CAS  PubMed  Google Scholar 

  • Wille F, Breel JS, Bakker EW, Hollmann MW (2017) Altering Conventional to High Density Spinal Cord Stimulation: An Energy Dose-Response Relationship in Neuropathic Pain Therapy. Neuromodulation 20: 71–80

    Article  PubMed  Google Scholar 

  • Willis WD, Al-Chaer ED, Quast MJ, Westlund KN (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci 96: 7675–7679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wloch A, Capelle HH, Saryyeva A, Krauss JK (2013) Cervical myelopathy due to an epidural cervical mass after chronic cervical spinal cord stimulation. Stereotact Funct Neurosurg 91: 265–269

    Article  PubMed  Google Scholar 

  • Wu M, Komori N, Qin C, Farber JP, Linderoth B, Foreman RD (2008) Extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways involved in spinal cord stimulation (SCS) –induced vasodilation. Brain Res 1207: 73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Komori N, Qin C, Farber JP, Linderoth B, Foreman RD (2006) Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Res 1107: 177–184

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Linderoth B, Foreman RD (2008) Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci 138: 9–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Thorkilsen MM, Qin C, Farber JP, Linderoth B, Foreman RD (2007) Effects of spinal cord stimulation on peripheral blood circulation in rats with streptozotocin-induced diabetes. Neuromodulation 10: 216–223

    Article  PubMed  Google Scholar 

  • Yaknitsa V, Linderoth b, Meyersdon BA (1999) Spinal cord stimulation attenuates dorsal horn neuronal hyperexcitability in a rat model of mononeuropathy. Pain 79: 223–233

    Article  Google Scholar 

  • Yakovlev AE, Resch BE (2009) Treatment of intractable abdominal pain patient with Bannayan-Riley-Ruvalcaba syndrome using spinal cord stimulation. WMJ 108: 323–326

    PubMed  Google Scholar 

  • Yang F, Xu Q, Cheong YK, Shechter R, Sdrulla A, He SQ, Tiwari V, Dong X, Wacnik PW, Meyer R, Raja SN, Guan Y (2014) Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain 18: 978–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Maru F, Edner M, Hellström K, Kahan T, Persson H (2004) Spinal cord stimulation for refractory angina pectoris: a retrospective analysis of efficacy and cost-benefit. Coron artery Dis 15: 31–37

    Article  PubMed  Google Scholar 

  • Zhou L, Chiu SY (2001) Computer model for action potential propagation through branch point in myelinated nerves. J Neurophysiol 85: 197–210

    Article  CAS  PubMed  Google Scholar 

Literatur zu 3.9

  • Adams JE (1976) Naloxone reversal of analgesia produced by brain stimulation in human. Pain 2: 161–166

    Article  CAS  PubMed  Google Scholar 

  • Adams JE, Hosobuchi Y, Fields HL (1974) Stimulation of internal capsule for relief of chronic pain. J Neurosurg 41: 740–744

    Article  CAS  PubMed  Google Scholar 

  • Akil H, Mayer DH, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic agent. Science 191: 961–962

    Article  CAS  PubMed  Google Scholar 

  • Akil H, Richardson DE, Barchas JD, Li CH (1978a) Appearance of beta-endorphin-like immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical stimulation. Proc Natl Acad Sci 75: 5170–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akil H, Richardson DE, Hughes J, Barchas JD (1978b) Enkephalin-like material elevated in ventricular cerebrospinal fluid of pain patients after analgesic focal stimulation. Science 201: 463–465

    Article  CAS  PubMed  Google Scholar 

  • Albe-Fessard D, Besson JM (1973) Convergent thalamic and cortical projections. The nonspecific system. In: Handbook of Sensory Physiology. Iggo, A. (Hrsg) Springer, Berlin 489–560

    Google Scholar 

  • Albe-Fessard D, Berkley KJ, Kruger L, Ralston HJ 3rd, Willis WD Jr (1985) Diencephalic mechanisms of pain sensation. Brain Res 356: 217–296

    Article  CAS  PubMed  Google Scholar 

  • Albe-Fessard D, Gillett E (1961) Convergences d´ afferences d´origines corticalees et périphériques vers le centre médian du chat anesthésié ou éveillée. Electroencephalogr Clin Neurophysiol 13: 257–269

    Article  CAS  PubMed  Google Scholar 

  • Albe-Fessard D, Bowsher D, Mallart A (1962) Résponses évoqué dans la formation réticulée bulbaire au niveau de noyeau Giganto cellularis d´Olschewski. Role de ce noyeau dans la transmission vers le centre médian du thalamus des afférences somatiques. J. Physiol Paris 54: 271

    CAS  PubMed  Google Scholar 

  • Andy OJ (1980) Parafascicular-Center median nuclei stimulation for intractable pain and dyskinesia (painful dyskinesia). Appl Neurophysiol 43: 133–144

    CAS  PubMed  Google Scholar 

  • Andy OJ (1983) Thalamic stimulation for chronic pain. Appl Neurophysiol 46: 116–123

    CAS  PubMed  Google Scholar 

  • Apkarian AV, Hodge Jr CJ (1989) Primate spinothalamic pathways. III. thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288: 493–511

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI, Fields HL (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4: 451–462

    Article  CAS  PubMed  Google Scholar 

  • Bechtereva NP, Bondcharuk AN, Smirnov VM, Melyucheva LA (1972) Curative electric stimulation of deep-lying brain structures. Vopr Neirokhir 1: 7–12

    Google Scholar 

  • Benabid AL, Henriksen SJ, McGinty JF, Bloom FE (1983) Thalamic nucleus ventroposterolateralis inhibits nucleus parafascicularis response to noxious stimuli through a non opioid pathway. Brain Res 280: 217–231

    Article  CAS  PubMed  Google Scholar 

  • Beric A, Kelly PJ, Rezai A, Sterio D, Mogilner A, Zonenshayn M, Kopell B (2001) Complications of deep brain surgery. Stereotact Funct Neurosurg 77: 73–78

    Article  CAS  PubMed  Google Scholar 

  • Boccard SG, Pereira EA, Moir L, Aziz TZ, Green AL (2013) Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery 72: 221–230

    Article  PubMed  Google Scholar 

  • Boccard SG, Fitzgerald JJ, Pereira EA, Moir L, Van Hartevelt TJ, Kringelbach ML, Green AL, Aziz TZ (2014) Targeting the affective component of chronic pain: a case series of deep brain stimulation of the anterior cingulate cortex. Neurosurgery 74: 628–635

    Article  PubMed  Google Scholar 

  • Boivie J, Meyerson BA (1982) Correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 13: 113–126

    Article  CAS  PubMed  Google Scholar 

  • Bowsher D (1957) Termination oft he central pain pathway in man: the conscious appreciation of pain. Brain 80: 606–622

    Article  CAS  PubMed  Google Scholar 

  • Bowsher D (1960) some afferent and efferent connections oft he parafascicular-centre médian complex. In: Purpura, Yahr (Hrsg) The thalamus. Columbian University Press, New York 1960; S. 99–108

    Google Scholar 

  • Broggi G, Franzini A, Giorgi nC, Servello D, Spreafico R (1984) Preliminary results of specific thalamic stimulation for deafferentation pain. Acta neurochir. 33 (Suppl): 497–500

    Google Scholar 

  • Cesaro P, Amsallem B, Pollin B, Nguyen-Legros J, Moretti JL (1986) Organization of the median and intralaminar nuclei of the thalamus: hypotheses on their role in the onset of certain central pain. Rev Neurol 142: 297–302

    CAS  PubMed  Google Scholar 

  • Chung JM, Lee KH, Surmeier DJ, Sorkin LS, Kim J, Willis WD (1986) Response characteristics of neurons in the ventral posterior lateral nucleus of the monkey thalamus. J Neurophysiol 56: 370–390

    Article  CAS  PubMed  Google Scholar 

  • Coffey RJ (2001) Deep brain stimulation for chronic pain: results of two multicenter trials and a structural review. Pain Med 2: 183–192

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove GR, Rauch SL (2003) Stereotactic cingulotomy. Neurosurg Clin N Am 14: 225–235

    Article  PubMed  Google Scholar 

  • Craig AD Jr, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol. 45: 443–466

    Article  PubMed  Google Scholar 

  • Cruccu G, Garcia-Larrea L, Hansson P, Keindl M, Lefaucheur J-P, Paulus W, Taylor R, Tronnier V, Truini A, Attal N (2016) EFNS-EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur J Neurol; 23: 1489–1499

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann G, Witzmann A (1982) Initial and long-term results of deep brain stimulation for chronic intractable pain. Appl Neurophysiol 45: 167–172

    CAS  PubMed  Google Scholar 

  • Dionne RA, Mueller GP, Young RF, Greenberg RP, Hargreaves KM, Gracely RH, et al (1984) Contrast medium causes the apparent increase in beta-endorphin levels in human cerebrospinal fluid following brain stimulation. Pain 20: 313–321

    Article  CAS  PubMed  Google Scholar 

  • Duncan GH, Bushnell MC, Marchand S (1991) Deep brain stimulation: a review of basic research and clinical studies. Pain 45: 49–59

    Article  CAS  PubMed  Google Scholar 

  • Ericson AC, Blomqvist A, Krout K, Craig AD (1996) Fine structural organization of spinothalamic and trigeminothalamic lamina I terminations in the nucleus submedius of the cat. J Comp Neurol 371: 497–512

    Article  CAS  PubMed  Google Scholar 

  • Ervin FR, CE B, Mark VH (1966) Striatal influence on facial pain. Confinia Neurol 27: 75–86

    Article  CAS  Google Scholar 

  • Fairman D (1976) Neurophysiological basis for the hypothalamic lesion and stimulation by chronic implanted electrodes for the relief of intractable pain in cancer. Adv Pain Res Ther 1: 843–847

    Google Scholar 

  • Fenelon G, Francois C, Percheron G, Yelnik J (1991) Topographic distribution of neurons of the central complex (centremédian-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaques. Neuroscience 45: 495–510

    Article  CAS  PubMed  Google Scholar 

  • Fessler RG, Brown FD, Rachlin JR, Mullan S, Fang VS (1984) Elevated beta-endorphin in cerebrospinal fluid after electrical brain stimulation: artifact of contrast infusion? Science 224: 1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Fields HL, Adams JE (1974) Pain after cortical injury relieved by electrical stimulation of the internal capsule. Brain 97: 169–178

    Article  CAS  PubMed  Google Scholar 

  • Foltz EL, White LWE Jr (1962) Pain „relief“ by frontal cingulumotomy. J Neurosurg 19: 89–100

    Article  CAS  PubMed  Google Scholar 

  • Gear RW, Levine JD (2011) Nucleus accumbens facilitates nociception. Exp Neurol 229: 502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhart KD, Yezierski RP, Fang ZR, Willis WD (1983) Inhibition of spinothalamic tract neurons by stimulation in ventral posterior lateral (VPL) thalamic nuclei. J Neurophysiol 49: 406–423

    Article  CAS  PubMed  Google Scholar 

  • Gerhart KD, Yezierski RP, Wilcox TK, Grossman AE, Willis WD (1981) Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLC) thalamic nucleus. Brain Res 229: 514–519

    Article  CAS  PubMed  Google Scholar 

  • Gerhart KD, Yezierski RP, Wilcox TK, Willis WD (1984) Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. J Neurophysiol 51: 450–466

    Article  CAS  PubMed  Google Scholar 

  • Gura EV, Garkavenko VV, Limansky YM (1991) Influences of central gray matter stimulation on thalamic neuron responses to high and low treshold stimulation of trigeminal nerve structures. Neuroscience 41: 681–693

    Article  CAS  PubMed  Google Scholar 

  • Gol A (1967) Relief of pain by electrical stimulation of the septal area. J Neurosci 5: 115–120

    CAS  Google Scholar 

  • Gorecki J, Hirayama T, Dostrovsky JO, Tasker RR, Lenz FA (1989) Thalamic stimulation and recording in patients with deafferentation and central pain. Stereotact Funct Neurosurg 52: 219–226

    Article  CAS  PubMed  Google Scholar 

  • Green AL, Nandi D, Armstrong G, Carter H, Aziz T (2003) Post-herpetic trigeminal neuralgia treated with deep brain stimulation. J Clin Neurosci 10: 512–514

    Article  CAS  PubMed  Google Scholar 

  • Green AL, Wang S, Stein JF, Pereira EA, Kringelbach ML, Liu X, Brittain JS, Aziz TZ (2009) Neural signatures in patients with neuropathic pain. Neurology 72: 569–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gybels J, Kupers R, Nuttin B (1993) What can the neurosurgeon offer in peripheral neuropathic pain!? Acta neurochir Suppl 58: 136–140

    CAS  PubMed  Google Scholar 

  • Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol. 293: 282–298

    Article  CAS  PubMed  Google Scholar 

  • Hamani C, Schwalb J, Rezai AR, Dostrovsky JO, Davis KD, Lozano AM (2006) Deep brain stimulation for chronic neuropathic pain: Long-term outcome and the incidence of insertional effect. Pain 125: 188–196

    Article  PubMed  Google Scholar 

  • Hariz MI, Bergenheim AT (1995) Thalamic stereotaxis for chronic pain. Ablative lesion or stimulation? Stereotact Funct Neurosurg 64: 47–55

    Article  CAS  PubMed  Google Scholar 

  • Harte SE, Lagman AL, Borszcz GS (2000) Antinociceptive effects of morphine injected into the nucleus parafascicularis thalami of the rat. Brain Res 874: 78–86

    Article  CAS  PubMed  Google Scholar 

  • Heath RG, Mickle WA (1960) Evaluation of seven years´ experience with depth electrode studies in human patients. In: Ramey ER, O´Doherty DS (Hrsg) New York: Paul B Hoeber 1960, 214–247

    Google Scholar 

  • Hécaen H, Talairach J, David M, Dell MB (1949) Coagulations limitées du thalamus dans les algies du syndrome thalamique. Rev Neurol 81: 917–931

    Google Scholar 

  • Henning Proske J, Jeanmonod D, Verschure PF (2011) A computational model of thalamocortical dysrhythmia. Eur J Neurosci 33: 1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Dostrovsky JO, Gorecki J, Tasker RR, Lenz FA (1989) Recordings of abnormal activity in patients with deafferentation and central pain. Stereotact Funct Neurosurg 52: 120–126

    Article  CAS  PubMed  Google Scholar 

  • Hodge CJ Jr, Apkarian AV (1990) The spinothalamic tract. Crit Rev Neurobiol 5: 363–397

    PubMed  Google Scholar 

  • Hodge Jr CJ, Apkarian AV, Stevens RT (1986) Inhibition of dorsal horn cell responses by stimulation of the Koelliker-Fuse nucleus. J Neurosurg 65: 825–833

    Article  PubMed  Google Scholar 

  • Hosobuchi Y (1983) Combined electrical stimulation oft he periaqueductal gray matter and sensory thalamus. Appl Neurophysiol 46: 112–115

    CAS  PubMed  Google Scholar 

  • Hosobuchi Y (1986) Subcortical electrical stimulation for control of intractable pain in humans. Report of 122 cases. J Neurosurg 64: 543–553

    Article  CAS  PubMed  Google Scholar 

  • Hosobuchi Y (1988) Current issues regarding subcortical electrical stimulation for pain control in humans. Prog Brain Res 77: 189–192

    Article  CAS  PubMed  Google Scholar 

  • Hosobuchi Y, Adams JE, Linchitz R (1977) Pain relief by electrical stimulation of the central gray matter in human and its reversal by naloxone. Science 197: 183–186

    Article  CAS  PubMed  Google Scholar 

  • Hosobuchi Y, Adams JE, Rutkin B (1073) Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol 29: 153–169

    Google Scholar 

  • Hosobuchi Y, Adams JE, Rutkin B (1975) Chronic thalamic and internal capsule stimulation fort he control of central pain. Surg Neurol 1975: 4: 91–92

    Google Scholar 

  • Hosobuchi Y, Rossier J, Bloom FE (1979) Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid. Science 203: 279–281

    Article  CAS  PubMed  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A (1993) Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 4: 475–478

    Article  CAS  PubMed  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A, Siegemund M, Cancro R, Lanz M, et al (2001) Thalamocortical dysrhythmia II. Clinical and surgical aspects. Thalamus Related Syst 1: 245–254

    Google Scholar 

  • Jeanmonod J, Magnin M, Morel A (1996) Low-treshold calcium spike burst in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119: 363–375

    Article  PubMed  Google Scholar 

  • Jones EG, Burton H (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154: 173–245

    Google Scholar 

  • Katayama Y, DeWitt DS, Becker DP, Hayes RL (1984a) Behavioral evidence for a cholinoceptive pontine inhibitory area: Descending control of spinal motor output and sensory input. Brain Res 296: 241–262

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Tsubokawa T, Hirayama T, Yamamoto T (1985) Pain relief following stimulation of the pontomesencephalic parabrachial region in human. Brain sites for non-opiate-mediated pain control. Appl Neurophysiol 48: 195–200

    CAS  PubMed  Google Scholar 

  • Katayama Y, Watkins LR, Becker DP, Hayes RL (1984b) Non opiate analgesia by carbachol injection into the pontine parabrachial region of the cat. Brain Res 296: 263–283

    Article  CAS  PubMed  Google Scholar 

  • Kenshalo DR, Giesler GJ, Leonard RB, Willis WD (1980) Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 43: 1594–1614

    Article  PubMed  Google Scholar 

  • Krauss JK, Pohle T, Weigel R, Kalbarczyk A (2001) Somatosensory thalamic stimulation versus center median-parafascicular complex stimulation in 11 patients with neuropathic pain. Stereotact Funct Neurosurg 77: 194

    Article  Google Scholar 

  • Krauss JK, Pohle T, Weigel R, Burgunder JM (2002) Deep brain stimulation of the centre median-parafascicular complex in patients with movement disorders. J Neurol Neurosurg Psychiatry 72: 546–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Wyant GM, Nath R (1990) Deep brain stimulation for the control of intractable pain in humans, present and future: a ten-year follow-up. Neurosurgery 26; 774–782

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Toth C, Nath RK (1997) Deep brain stimulation for intractable pain: A 15-year experience. Neurosurgery 40: 736–746

    Article  CAS  PubMed  Google Scholar 

  • Lanotte M, Verna G, Panciani PP, Taveggia A, Zibetti M, Lopiano L, Ducati A (2009) Management of skin erosion following deep brain stimulation. Neurosurg Rev 32: 111–114

    Article  PubMed  Google Scholar 

  • Lenz FA (1992) The ventral posterior nucleus of thalamus is involved in the generation of central pain syndromes. APS Journal 1: 42–51

    Article  Google Scholar 

  • Lenz FA, Gracely RH, Hope EJ (1994a) The sensation of angina can be evoked by stimulation of the human thalamus. Pain 59: 119–125

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Gracely RH, Romanoski AJ, Hope EJ, Rowland LH, Dougherty PM (1995) Stimulation in the human somatosensory thalamus can produce both the affective and sensory dimensions of previously experienced pain. Nature Med 1: 910–913

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Gracely RH, Rowland LH, Dougherty PM (1994b) A population of cells in the human thalamic principal sensory nucleus respond to painful mechanical stimuli. Neurosci Lett 180: 46–50

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Kwan HC, Martin R, Tasker R, Richardson T, Dostrovsky JO (1994c) Characteristics of somatotopic organization and spontaneous neuronal activity in the region of the thalamic principal sensory nucleus in patients with spinal cord transsection. J Neurophysiol 72: 1570–1587

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Seike M, Lin YC, Baker FH, Rowland LH, Gracely RH, et al (1993a) Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res 623: 235–240

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Seike M, Richardson RT, Lin YC, Baker FH, Khoja I, et al (1993b) Thermal and pain sensations evoked by microstimulation in the area of human ventrocaudal nucleus. J Neurophysiol 70: 200–212

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Tasker RR, Dostrowsky JO, Kwan HC, Gorecki J, Hirayama T, et al (1987) Abnormal single-unit activity recorded in the somatosensory thalamus of a quadriplegic patient with central pain. Pain 31: 225–236

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Zirh TA, Garonzik IM, Dougherty PM (1998) Neuronal activity in the region of the principle sensory nucleus of the human thalamus (ventralis caudalis) in patients with pain following amputations. Neuroscience 86: 1065–1081

    Article  CAS  PubMed  Google Scholar 

  • Levy RM, Lamb S, Adams JE (1987) Treatment of chronic pain by deep brain stimulation: Long-term follow-up and review of the literature. Neurosurgery 21: 885–893

    Article  CAS  PubMed  Google Scholar 

  • Li HS, Monhemius R, Simpson BA, Roberts MH (1998) Supraspinal inhibition of nociceptive dorsal horn neurones in the anaesthetized rat: tonic or dynamic? J Physiol 506: 459–469

    Google Scholar 

  • Lis-Planells M, Tronnier VM, Rinaldi PC, Young RF (1992) Neural activity in medial and lateral thalamus in a deafferentation model. 22nd Annual Meeting of the Society of Neuroscience, Anaheim, 1992

    Google Scholar 

  • Llinás RR, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurons in vitro. Nature 297: 406–408

    Article  PubMed  Google Scholar 

  • Llinas R, Ribary U, Jeanmonod D, Cancro R, Kronberg E, Schulman J, Zonenshayn M, Magnin M, Morel A, Siegemund M (2001) Thalamocortical dysrhythmis. I. Functional and imaging aspects. Thal Rel Syst 1: 237–244

    Google Scholar 

  • Lombard MC, Nashold BS, Pelissier T (1979) Thalamic recordings in rats with hyperalgesia. Adv Pain Res Ther 3: 767–772

    Google Scholar 

  • Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Luys JB (1865) Recherche sur la système nerveux cerébrospinal: sa structure, ses functions, et ses maladies. Bailliere, Paris

    Google Scholar 

  • Ma QP, Shi YS, Han JS (1992) Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception. Brain Res 583: 292–295

    Article  CAS  PubMed  Google Scholar 

  • Mallory GW, Abulseoud O, Hwang SC, Gorman DA, Stead SM, Klassen BT, Sandroni P, Watson JC, Lee KH (2012) The nucleus accumbens as a potential target for central poststroke pain. Mayo Clin Proc 87: 1025–1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantyh PW (1983) The spinothalamic tract in primate: a reexamination using wheatgerm agglutinin conjugated with horse radish peroxidase. Neuroscience 9: 847–863

    Article  CAS  PubMed  Google Scholar 

  • Marchand S, Kupers RC, Bushnell MC, Duncan GH (2003) Analgesic and placebo effects of thalamic stimulation. Pain 105: 481–488

    Article  PubMed  Google Scholar 

  • Mark VH, Ervin FR (1965) Role of thalamotomy in in treatment of chronic severe pain. Postgrad Med 37: 563–571

    Article  CAS  PubMed  Google Scholar 

  • Mark VH, Ervin FR, Hackett TP (1960) Clinical aspectrs of stereotactic thalamotomy in the human. Part I. The treatment of chronic severe pain. Arch Neurol 3: 351–367

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto N, Minamimoto T, Graybiel AM, Kimura M (2001) Neurons in the thalamic CM-PF complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85: 960–976

    Article  CAS  PubMed  Google Scholar 

  • Mayanagi Y, Sano K, Suzuki I, Kanazawa I, Aoyagi I, Miyachi Y (1982) Stimulation and coagulation of the posteromedial hypothalamus for intractable pain, with reference to ß-endorphins. Appl Neurophysiol 45: 136–142

    CAS  PubMed  Google Scholar 

  • Mayer DJ, Hayes RL (1975) Stimulation produced analgesia: development of tolerance and cross-tolerance to morphine. Science 188: 941–943

    Article  CAS  PubMed  Google Scholar 

  • Mazars GJ (1975) Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Surg Neurol 4: 93–96

    CAS  PubMed  Google Scholar 

  • Mazars G, Merienne L, Cioloca C (1973) Stimulations thalamiques intermittentes antalgiques. Rev Neurol 128: 273–279

    CAS  PubMed  Google Scholar 

  • Mazars G, Ruge R, Mazars Y (1960) Résultats de la stimulation du faisceau spino-thalamique et leur incidence sur la pathophysiologie de la douleur. Rev Neurol 103: 136–138

    CAS  PubMed  Google Scholar 

  • McLennan H, Miller JJ (1974) The hippocampal control of neuronal discharges in the septum of the rat. J Physiol 237: 607–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degeneration follolwing anterolateral cordotomy. An experimental study in the monkey. Brain 83: 718–751

    CAS  PubMed  Google Scholar 

  • Modesti LM, Waszak M (1975) Firing pattern of cells in human thalamus during dorsal column stimulation. Appl Neurophysiol 38: 251–258

    CAS  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and the activation of the EEG. Electroenc Clin Neurophysiol 1: 455–473

    Article  CAS  Google Scholar 

  • Mundinger F (1977) Die Behandlung chronischer Schmerzen mit Hirnstimulatoren. Dtsch Med Wschr 102: 1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Namba S, Wani T, Shimizu Y, Fujiwara N, Namba Y, Nakamua S, Nishimoto A (1985) Sensory and motor responses to deep brain stimulation. Correlation with anatomical structures. J Neurosurg 63: 224–234

    CAS  PubMed  Google Scholar 

  • Nandi D, Liu X, Joint C, Stein J, Aziz T (2002) Thalamic field potentials during deep brain stimulation of periventricular gray in chronic pain. Pain 97: 47–51

    Article  PubMed  Google Scholar 

  • Nandi D, Aziz T, Carter H, Stein J (2003) Thalamic field potentials in chronic central pain treated by periventricular gray stimulation -- a series of eight cases. Pain 101: 97–107

    Article  PubMed  Google Scholar 

  • Nandi D, Aziz TZ (2004) Deep brain stimulation in the management of neuropathic pain and multiple sclerosis tremor. J Clin Neurophysiol 21: 31–39

    Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419–427

    Article  CAS  PubMed  Google Scholar 

  • Owen SL, Green AL, Stein JF, Tipu AZ (2006) Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 120: 202–206

    Article  PubMed  Google Scholar 

  • Owen SL, Green AL, Nandi DD, Bittar RG, Wang S, Aziz TZ (2007) Deep brain stimulation for neuropathic pain. Acta neurochir 2007 (Suppl); 97: 111–116

    Google Scholar 

  • Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25: 69–86

    Article  PubMed  Google Scholar 

  • Pert A, Walter M (1976) Comparison between naloxone reversal of morphine and electrical stimulation induced analgesia in the rat mesencephalon. Life Sci 19: 1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Plotkin R (1982) Results in 60 cases of deep brain stimulation for chronic intractable pain. Appl. Neurophysiol 45: 173–178

    CAS  PubMed  Google Scholar 

  • Pool JL (1954) Psychosurgery in older people. J Am Geriatr Soc 2: 456–465

    Google Scholar 

  • Pool JL, Clark WD, Hudson P, Lombardo M (1956) Steroid hormonal response to stimulation of electrodes implanted in the subfrontal parts of the brain. In: Fields WS, Guillemin R, Carton CA (Hrsg). Hypothalamic-hypophyseal interrelationships. A symposium. Charles Thomas, Springfield 1956

    Google Scholar 

  • Portenoy RK, Jarden JO, Sidtis JJ, Lipton RB, Foley KM, Rottenberg DM (1986) Compulsive thalamic self-stimulation: a case with metabolic, electrophysiologic and behavioral correlates. Pain 27: 277–290

    Article  CAS  PubMed  Google Scholar 

  • Ralston HJ 3. (2005) Pain and the primate thalamus. Prog Brain Res 149: 1–10

    Article  PubMed  Google Scholar 

  • Ralston HJ 3., Ralston D (1992) The primate dorsal spinothalamic tract: evidence for a specific termination in the posterior nuclei (Po/SG) of the thalamus. Pain 48: 107–118

    Google Scholar 

  • Rasche D, Rinaldi PC, Young RF, Tronnier VM (2006) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21: E8

    Article  PubMed  Google Scholar 

  • Ray CD, Burton CV (1980) Deep brain stimulation for severe chronic pain. Acta neurochirurgica Suppl 30: 289–293

    Article  CAS  Google Scholar 

  • Reyes-Vazquez C, Qiao JT, Dafny N (1989) Nociceptive responses in nucleus parafascicularis thalami are modulated by dorsal raphe stimulation and microiontophoretic application of morphine and serotonin. Brain Res Bull 23: 405–411

    Article  CAS  PubMed  Google Scholar 

  • Reynolds DV (1969) Surgery in the rat during electric analgesia induced by focal brain stimulation. Science 164: 444–445

    Article  CAS  PubMed  Google Scholar 

  • Richardson DE (1982) Analgesia produced by stimulation of various sites in the human beta-endorphin system. Appl Neurophysiol 45: 116–122

    CAS  PubMed  Google Scholar 

  • Richardson DE, Akil H (1977a) Pain reduction by electrical stimulation in man: Part II: Chronic selfadministration in the periventricular grey matter. J Neurosurg 47: 184–194

    Article  CAS  PubMed  Google Scholar 

  • Richardson DE, Akil H (1977b) Long-term results of periventricular gray self-stimulation. Neurosurgery 1: 199–202

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi PC, Young RF, Albe-Fessard D, Chodakiewitz J (1991a) Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J Neurosurg 74: 415–421

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi PC, Young RF, Tronnier VM (1991b) Bursting activity of thalamic neurons from chronic pain patients is modified by electrical stimulation in PVG. Soc Neurosci Abstr 17: 1560

    Google Scholar 

  • Rinaldi PC, Young RF, Tronnier VM (1991) Bursting activity of thalamic neurons from chronic pain patients is modified by electrical stimulation in PVG. Soc Neurosci Abstr 17: 1560

    Google Scholar 

  • Rinaldi PC, Young RF, Tronnier VM (1992) Characteristics of spontaneous activity of medial and lateral thalamic neurons recorded from patients with chronic pain of nociceptive or deafferentation origin. 11th Annual Scientific Meeting of the American Pain Society, San Diego, 1992

    Google Scholar 

  • Roldan P, Broseta J, Barcia-Salorio JL (1982) Chronic VPM stimulation for anesthesia dolorosa following trigeminal surgery. Appl Neurophysiol. 45: 112–113

    CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA-L study of subcortical projections. J Comp Neurol 315: 137–159

    Article  CAS  PubMed  Google Scholar 

  • Sakata S, Shima F, Kato M, Fukui M (1988) Effects of thalamic parafascicular stimulation on the periaqueductal gray and adjacent reticular formation neurons. A possible contribution to pain control mechanisms. Brain Res 451: 85–96

    Article  CAS  PubMed  Google Scholar 

  • Sandkühler J, Gebhart G (1984) Characterization of inhibition of a spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat. Brain Res 305; 67–76

    Article  PubMed  Google Scholar 

  • Sandkühler J, Fu QG, Zimmermann M (1987) Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in cat. J Neurophysiol 58: 327–341

    Article  PubMed  Google Scholar 

  • Sano K, Mayanagi Y, Sekino H, Ogashiwa M, Ishijima B (1970) Results of stimulation and destruction of the posterior hypothalamus in man. J Neurosurg 33: 689–707

    Article  CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1966) Patterns of organization in specific and non-specific thalamic fields. In Purpura, Yahr (Hrsg). The thalamus. Columbia University Press, New York, 1966, S. 13–46

    Google Scholar 

  • Schvarcz JR (1985) Chronic stimulation of the septal area for the relief of intractable pain. Appl Neurophysiol 48: 191–194

    CAS  PubMed  Google Scholar 

  • Siegfried J (1982) Monopolar electrical stimulation of nucleus ventroposteromedialis thalami for postherpetic pain. Appl Neurophysiol 45: 179–184

    CAS  PubMed  Google Scholar 

  • Siegfried J (1987) Sensory thalamic neurostimulation for chronic pain. PACE 10: 209–212

    Article  CAS  PubMed  Google Scholar 

  • Spiegel EA, Wycis HT (1953) Mesencephalotomy in treatment of „intractable“ facial pain. Arch Neurol Psychiat 69: 1–13

    Article  CAS  Google Scholar 

  • Spooner J, Yu H, Kao C, Sillay K, Konrad P (2007) Neuromodulation of the cingulum for neuropathic pain after spinal cord injury. Case report. J Neurosurg 107: 169–172

    PubMed  Google Scholar 

  • Tasker RR, Vilela Filho O (1996) Deep brain stimulation for the control of intractable pain. In: Youmans JR (Hrsg) Neurological Surgery, Philadelphia, Saunders Vol. 5, 1996, S. 3512–3527

    Google Scholar 

  • Thoden U, Doerr M, Dieckmann G, Krainick JU (1979) Medial thalamic permanent electrodes for pain control in man: an electrophysiological and clinical study. Electroencephalogr Clin Neurophysiol. 47: 582–591

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T (1985) Deafferentiation pain and stimulation of the thalamic sensory relay nucleus: Clinical and experimental study. Appl Neurophysiol 48: 166–171

    CAS  PubMed  Google Scholar 

  • Turnbull IM, Shulman R, Woodhurst WB (1980) Thalamic stimulation for neuropathic pain. J Neurosurg 52: 486–493

    Article  CAS  PubMed  Google Scholar 

  • Vogt C, Vogt O (1941) Thalamusstudien I–III. J Psychol Neurol 50: 32–154

    Google Scholar 

  • Weigel R, Krauss JK (2004) Center median-parafascicular complex and pain control. Review from a neurosurgical perspective. Stereotact Funct Neurosurg. 82: 115–126

    Article  PubMed  Google Scholar 

  • Williams DJ, Crossman AR, Slater P (1977) The efferent projections of the nucleus accumbens in the rat. Brain Res 130: 217–227

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson HA, Davidson KM, Davidson RI (1999) Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery 45: 1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro K, Tomiyama N, Terada Y, Samura H, Mukawa J, Tasker RR (2003) Neurons with spontaneous high-frequency discharges in the central nervous system and chronic pain. Acta Neurochir Suppl. 87: 153–155

    CAS  PubMed  Google Scholar 

  • Yezierski RP, Wilcox TK, Willis WD (1982) The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation of the nucleus raphe magnus or periaqueductal gray. J Pharmacol Exper Ther 220: 266–277

    CAS  Google Scholar 

  • Young RF, Kroening R, Fulton W, Feldman RA, Chambi I (1985) Electrical stimulation of the brain in treatment of chronic pain. J Neurosurg 62: 389–396

    Article  PubMed  Google Scholar 

  • Young RF, Bach FW, Van Norman AS, Yaksh TL (1993) Release of beta-endorphin and met-enkephalin into cerebrospinal fluid during deep brain stimulation for chronic pain. Effects of stimulation locus and site of sampling. J Neurosurg 79: 816–825

    CAS  PubMed  Google Scholar 

  • Young RF, Chambi I (1987) Pain relief by electrical stimulation of the periaqueductal and periventricular grey matter. J Neurosurg 66: 364–377

    Article  CAS  PubMed  Google Scholar 

  • Young RF, Tronnier V, Rinaldi PC (1992) Chronic stimulation of the Kölliker-Fuse nucleus region for relief of intractable pain in humans. J Neurosurg 1992, 76; 979–985

    Article  Google Scholar 

  • Zhang D, Owens CM, Willis WD (1991) Two forms of inhibition of spinothalamic tract neurons produced by stimulation of the periaqueductal gray and the cerebral cortex. J Neurophysiol 65: 1567–1579

    Article  CAS  PubMed  Google Scholar 

Literatur zu 3.10

  • Akram H, Miller S, Lagrata S, Hyam J, Jahanshahi M, Hariz M, Matharu M, Zrinzo L (2016) Ventral tegmental area deep brain stimulation for refractory chronic cluster headache. Neurology 2016 Mar 30. pii: doi: 10.1212/WNL.0000000000002632. [Epub ahead of print]

  • Ansarinia M, Rezai A, Tepper SJ, Steiner CP, Stump J, Stanton-Hicks M, Machado A, Narouze S (2010) Electrical stimulation of sphenopalatine ganglion for acute treatment of cluster headaches. Headache 50: 1164–1174

    Article  PubMed  Google Scholar 

  • Bartsch T, Levy MJ, Knight YE, Goadsby PJ (2004) Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 109: 367–378

    Article  CAS  PubMed  Google Scholar 

  • Bartsch T, Pinsker MO, Rasche D, Kinfe T, Hertel F, Diener HC, Tronnier V, Mehdorn HM, Volkmann J, Deuschl G, Krauss JK (2008) Hypothalamic deep brain stimulation for cluster headache: experience from a new multicase series. Cephalalgia 28: 285–295

    Article  CAS  PubMed  Google Scholar 

  • Fairman D (1972) Hypothalamotomy as a new perspective for alleviation of intractable pain and regression of metastatic malignant tumors, in Fusek I, Kunk Z (Hrsg): Present Limits of Neurosurgery. Prague, Avicenum, S. 525–528

    Google Scholar 

  • Fontaine D, Lanteri-Minet M, Ouchchane L, Lazorthes Y, Mertens P, Blond S, Geraud G, Fabre N, Navez M, Lucas C, Dubois F, Sol JC, Paquis P, Lemaire JJ (2010) Anatomical location of effective deep brain stimulation electrodes in chronic cluster headache. Brain 133: 1214–1223

    Article  PubMed  Google Scholar 

  • Fontaine D, Lazorthes Y, Mertens P, Blond S, Géraud G, Fabre N, Navez M, Lucas C, Dubois F, Gonfrier S, Paquis P, Lantéri-Minet M (2010) Safety and efficacy of deep brain stimulation in refractory cluster headache: a randomized placebo-controlled double-blind trial followed by a 1-year open extension. J Headache Pain 11: 23–31

    Article  CAS  PubMed  Google Scholar 

  • Goadsby PJ, Matharu MS, Boes CJ (2001) SUNCT syndrome or trigeminal neuralgia with lacrimation. Cephalalgia 21: 82–83

    Article  CAS  PubMed  Google Scholar 

  • Goadsby PJ, Lipton RB (1997) A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain 120: 193–209

    Article  PubMed  Google Scholar 

  • Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic grey matter in a patient with intractable cluster headache. N Engl J Med 345: 1428–1429

    Article  CAS  PubMed  Google Scholar 

  • Leone M, Proietti Cecchini A (2015) Deep brain stimulation in headache. Cephalalgia 2015 Dec 7. pii: 0333102415607176. [Epub ahead of print]

    Google Scholar 

  • Magis D, Gérard P, Schoenen J (2016) Invasive occipital nerve stimulation for refractory chronic cluster headache: what evolution at long-term? Strengths and weaknesses of the method. J Headache Pain 17: 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malick A, Burstein R (1998) Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol 400: 125–144

    Article  CAS  PubMed  Google Scholar 

  • Matharu MS, Cohen AS, Frackowiak RS, Goadsby PJ (2006) Posterior hypothalamic activation in paroxysmal hemicrania. Ann Neurol 59: 535–545

    Article  PubMed  Google Scholar 

  • May A, Bahra A, Büchel C, Frackowiak RS, Goadsby PJ (1998) Hypothalamic activation in cluster headache attacks. Lancet 352: 275–278

    Article  CAS  PubMed  Google Scholar 

  • Mueller OM, Gaul C, Katsarava Z, Diener HC, Sure U, Gasser T (2011) Occipital nerve stimulation for the treatment of chronic cluster headache – lessons learned from 18 months experience. Cent Eur Neurosurg 72: 84–89

    Article  CAS  PubMed  Google Scholar 

  • Pietzsch JB, Garner A, Gaul C, May A (2015) Cost-effectiveness of stimulation of the sphenopalatine ganglion (SPG) for the treatment of chronic cluster headache: a model-based analysis based on the Pathway CH-1 study. J Headache Pain 16: 530

    Article  PubMed  CAS  Google Scholar 

  • Rasche D, Foethke D, Gliemroth J, Tronnier VM (2006) Tiefenhirnstimulation im posterioren Hypothalamus zur Behandlung des chronischen Clusterkopfschmerzes. Fallbericht und Literaturübersicht. Schmerz 20: 439–444

    CAS  Google Scholar 

  • Sano K, Mayanagi Y, Sekino H, Ogashiwa M, Ishijima B (1970) Results of stimulation and destruction of the posterior hypothalamus in man. J Neurosurg 33: 689–707

    Article  CAS  PubMed  Google Scholar 

  • Sano K, Sekino H, Hashimoto I, Amano K, Sugiyama H (1975) Posteromedial Hypothalamotomy in the treatment of tractable pain. Confin Neurol 37: 285–290

    Article  CAS  PubMed  Google Scholar 

  • Schoenen J, Di Clemente L, Vandenheede M, Fumal A, De Pasqua V, Mouchamps M, Remacle JM, de Noordhout AM (2005) Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain 128: 940–947

    Google Scholar 

  • Schoenen J, Jensen RH, Lantéri-Minet M, Láinez MJ, Gaul C, Goodman AM, Caparso A, May A (2013) Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study. Cephalalgia 33: 816–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Piacentino M, D'Andrea G, Perini F, Volpin L (2014) Drug-resistant cluster headache: long-term evaluation of pain control by posterior hypothalamic deep-brain stimulation. World Neurosurg 81: 442. e11–15

    Google Scholar 

  • Wilbrink LA, Teernstra OP, Haan J, van Zwet EW, Evers SM, Spincemaille GH, Veltink PH, Mulleners W, Brand R, Huygen FJ, Jensen RH, Paemeleire K, Goadsby PJ, Visser-Vandewalle V, Ferrari MD (2013) Occipital nerve stimulation in medically intractable, chronic cluster headache. The ICON study: rationale and protocol of a randomised trial. Cephalalgia 33: 1238–1247

    PubMed  Google Scholar 

Literatur zu 3.11

  • André-Obadia N, Peyron R, Mertens P, Mauguière F, Laurent B, Garcia-Larrea L (2006) Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin Neurophysiol 117: 1536–1544

    Article  PubMed  Google Scholar 

  • Biemond A (1956) The conduction of pain above the level of the thalamus opticus. Arch Neurol Psychiatry 75: 231–244

    Article  CAS  Google Scholar 

  • Canavero S, Bonicalzi V (2002) Therapeutic extradural cortical stimulation for central and neuropathic pain: a review. Clin J Pain 18: 48–55

    Article  PubMed  Google Scholar 

  • Canavero S, Bonicalzi V, Dotta M, Vighetti S, Asteggiano G, Cocito D (2002) Transcranial magnetic cortical stimulation relieves central pain. Stereotact Funct Neurosurg 78: 192–196

    Article  CAS  PubMed  Google Scholar 

  • de Andrade DC, Mhalla A, Adam F, Texeira MJ, Bouhassira D (2011) Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids. Pain 152: 320–326

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira RA, de Andrade DC, Mendonça M, Barros R, Luvisoto T, Myczkowski ML, Marcolin MA, Teixeira MJ (2014) Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain. J Pain 15: 1271–1281

    Article  PubMed  Google Scholar 

  • Ebel H, Rust D, Tronnier V, Böker D, Kunze S (1996) Chronic precentral stimulation in trigeminal neuropathic pain. Acta Neurochir 138: 1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Fontaine D, Bruneto JL, El Fakir H, Paquis P, Lanteri-Minet M (2009) Short-term restoration of facial sensory loss by motor cortex stimulation in peripheral post-traumatic neuropathic pain. J Headache Pain 10: 203–206

    Google Scholar 

  • Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, Bravo R, Rigonatti SP, Freedman SD, Nitsche MA, Pascual-Leone A, Boggio PS (2006a) A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54: 3988–3998

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone (2006b) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122: 197–209

    Article  PubMed  Google Scholar 

  • García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, Convers P, Mauguière F, Sindou M, Laurent B (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83: 259–273

    Article  PubMed  Google Scholar 

  • Garcia-Larrea L, Peyron R (2007) Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms. Neuroimage 37 Suppl 1: S71–79

    Article  PubMed  Google Scholar 

  • Goto T, Saitoh Y, Hashimoto N, Hirata M, Kishima H, Oshino S, Tani N, Hosomi K, Kakigi R, Yoshimine T (2008) Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation. Pain 140: 509–518

    Article  PubMed  Google Scholar 

  • Hodaj H, Alibeu JP, Payen JF, Lefaucheur JP (2015) Treatment of Chronic Facial Pain Including Cluster Headache by Repetitive Transcranial Magnetic Stimulation of the Motor Cortex with Maintenance Sessions: A Naturalistic Study. Brain Stimul 8: 801–807

    Article  PubMed  Google Scholar 

  • Hosomi K, Kishima H, Oshino S, Hirata M, Tani N, Maruo T, Yorifuji S, Yoshimine T, Saitoh Y (2013) Cortical excitability changes after high-frequency repetitive transcranial magnetic stimulation for central poststroke pain. Pain 154: 1352–1357

    Article  PubMed  Google Scholar 

  • Im SH, Ha SW, Kim DR, Son BC (2015) Long-term results of motor cortex stimulation in the treatment of chronic, intractable neuropathic pain. Stereotact Funct Neurosurg 93: 212–218

    Article  PubMed  Google Scholar 

  • Khedr EM, Kotb H, Kamel NF, Ahmed MA, Sadek R, Rothwell JC (2005) Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J Neurol Neurosurg Psychiatry 76: 833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziej MA, Hellwig D, Nimsky C, Benes L (2016) Treatment of Central Deafferentation and Trigeminal Neuropathic Pain by Motor Cortex Stimulation: Report of a Series of 20 Patients. J Neurol Surg A Cent Eur Neurosurg 77: 52–58

    PubMed  Google Scholar 

  • Lazorthes Y, Sol JC, Fowo S, Roux FE, Verdié JC (2007) Motor cortex stimulation for neuropathic pain. Acta Neurochir Suppl 97: 37–44

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP (2006) Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67: 1568–1574

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur JP (2008) Principles of therapeutic use of transcranial and epidural cortical stimulation. Clin Neurophysiol 119: 2179–2184

    Article  PubMed  Google Scholar 

  • Lefaucheur JP, Drouot X, Cunin P, Bruckert R, Lepetit H, Créange A, Wolkenstein P, Maison P, Keravel Y, Nguyen JP (2009) Motor Cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 132: 1463–1471

    Article  PubMed  Google Scholar 

  • Lefaucheur JP, Ayache SS, Sorel M, Farhat WH, Zouari HG, Ciampi de Andrade D, Ahdab R, Ménard-Lefaucheur I, Brugières P, Goujon C (2012) Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming. Eur J Pain 16: 1403–1413

    Article  PubMed  Google Scholar 

  • Lende RA, Kirsch WM, Druckman R (1971) Relief of facial pain after combined removal of precentral and postcentral cortex. J Neurosurg 34: 537–543

    Article  CAS  PubMed  Google Scholar 

  • Lima MC, Fregni F (2008) Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology 70: 2329–2337

    Article  PubMed  Google Scholar 

  • Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69: 827–834

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, McIntyre A, Guy S, Teasell RW, Loh E (2015) Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: a meta-analysis. Spinal Cord 53: 780–785

    Article  CAS  PubMed  Google Scholar 

  • Mertens P, Nuti C, Sindou M, Guenot M, Peyron R, Garcia-Larrea LB (1999) Precentral cortex stimulation for the treatment of central neuropathic pain: results of a prospective study in a 20-patient series. Stereotact Funct Neurosurg 73: 122–125

    Article  CAS  PubMed  Google Scholar 

  • Meyerson BA, Lindblom U, Linderoth B, Lind G, Herregodts P (1993) Motor cortex stimulation as treatment of trigeminal neuropathic pain. Acta neurochir 1993 (Suppl.) 58: 150–153

    Google Scholar 

  • Mhalla A, Baudic S, Ciampi de Andrade D, Gautron M, Perrot S, Teixeira MJ, Attal N, Bouhassira D (2011) Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 152: 1478–1485

    Article  PubMed  Google Scholar 

  • Monsalve GA (2012) Motor cortex stimulation for facial chronic neuropathic pain: A review of the literature. Surg Neurol Int 3(Suppl 4): S290–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Mylius V, Borckardt JJ, Lefaucheur JP (2012) Noninvasive cortical modulation of experimental pain. Pain 153: 1350–1363

    Article  PubMed  Google Scholar 

  • Nguyen JP, Lefaucheur JP, Decq P, Uchiyama T, Carpentier A, Fontaine D, Brugières P, Pollin B, Fève A, Rostaing S, Cesaro P, Keravel Y (1999) Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical electrophysiological and anatomical data. Pain 82: 245–251

    CAS  PubMed  Google Scholar 

  • Nguyen JP, Velasco F, Brugières P, Velasco M, Keravel Y, Boleaga B, Brito F, Lefaucheur JP (2008) Treatment of chronic neuropathic pain by motor cortex stimulation: results of a bicentric controlled crossover trial. Brain Stimul 1: 89–96-

    Google Scholar 

  • Nguyen JP, Nizard J, Keravel Y, Lefaucheur JP (2011) Invasive brain stimulation for the treatment of neuropathic pain. Nat Rev Neurol 7: 699–709

    Article  CAS  PubMed  Google Scholar 

  • Nuti C, Peyron R, Garcia-Larrea L, Brunon J, Laurent B, Sindou M, Mertens P (2005) Motor cortex stimulation for refractory neuropathic pain: four year outcome and predictors of efficacy. Pain 118: 43–52

    Article  PubMed  Google Scholar 

  • Penfield W, Welch K (1951) The supplementary motor area of the cerebral cortex; a clinical and experimental study. Arch Neurol Psychiatry 66: 289–317

    Article  CAS  Google Scholar 

  • Peyron R, Garcia-Larrea L, Deiber MP, Cinotti L, Convers P, Sindou M, Mauguière F, Laurent B (1995) Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study. Pain 62: 275–286

    Article  CAS  PubMed  Google Scholar 

  • Peyron R, Faillenot I, Mertens P, Laurent B, Garcia-Larrea L (2007) Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 34: 310–321

    Google Scholar 

  • Poggio GF, Mountcastle VB (1960) A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain. Bull Johns Hopkins Hosp 106: 266–316

    CAS  PubMed  Google Scholar 

  • Radic JA, Beauprie I, Chiasson P, Kiss ZH, Brownstone RM (2015) Motor Cortex Stimulation for Neuropathic Pain: A Randomized Cross-over Trial. Can J Neurol Sci 42: 401–409

    Article  PubMed  Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98: 417–440

    Article  PubMed  Google Scholar 

  • Rasche D, Ruppolt M, Stippich C, Tronnier VM (2006) Motor cortex stimulation for long-term relief of neuropathic pain: A 10 year experience. Pain 121: 43–52

    Article  PubMed  Google Scholar 

  • Rojas-Piloni G, Martínez-Lorenzana G, Condés-Lara M, Rodríguez-Jiménez J (2010) Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat. Brain Res 1351: 104–114

    Article  CAS  PubMed  Google Scholar 

  • Sachs Aj, Babu H, Su YF, Miller KJ, Henderson JM (2014) Lack of efficacy of motor cortex stimulation for the treatment of neuropathic pain. Neuromodulation 17: 303–311

    Article  PubMed  Google Scholar 

  • Saitoh Y, Shibata M, Hirano SI, Moshimo T, Yoshimine T (2000) Motor cortex stimulation for central and peripheral deafferentation pain. Report of eight cases. J Neurosurg 92: 150–155

    Google Scholar 

  • Saitoh Y, Yoshimine T (2007) Stimulation of primary motor cortex for intractable deafferentation pain. Acta Neurochir Suppl 97: 51–56.

    Google Scholar 

  • Senapati AK, Huntington PJ, Peng YB (2005) Spinal dorsal horn neuron response to mechanical stimuli is decreased by electrical stimulation of the primary motor cortex. Brain Res 1036: 173–179

    Article  CAS  PubMed  Google Scholar 

  • Short EB, Borckardt JJ, Anderson BS, Frohman H, Beam W, Reeves ST, George MS (2011) Ten sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: a randomized, controlled pilot study. Pain 152: 2477–2484

    Article  PubMed  PubMed Central  Google Scholar 

  • Slotty PJ, Eisner W, Honey CR, Wille C, Vesper J (2015) Long-term follow-up of motor cortex stimulation for neuropathic pain in 23 patients. Stereotact Funct Neurosurg 93: 199–205

    Article  PubMed  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T Koyama S (1991a) Chronic motor cortex stimulation for the treatment of central pain. Acta neurochir 52: (Suppl.) 137–139

    Article  CAS  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991b) Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 14: 131–134

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1993) Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg 78: 393–401

    Article  CAS  PubMed  Google Scholar 

  • Velasco F, Carrillo-Ruiz JD, Castro G, Argüelles C, Velasco AL, Kassian A, Guevara U (2009) Motor cortex electrical stimulation applied to patients with complex regional pain syndrome. Pain 147: 91–98

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tronnier, V. (2018). Neurostimulationsverfahren. In: Neurochirurgische Schmerztherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53561-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53561-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53560-8

  • Online ISBN: 978-3-662-53561-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics