Skip to main content

Saving Colors and Max Coloring: Some Fixed-Parameter Tractability Results

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9941))

Included in the following conference series:

Abstract

Max coloring is a well known generalization of the usual Min Coloring problem, widely studied from (standard) complexity and approximation viewpoints. Here, we tackle this problem under the framework of parameterized complexity. In particular, we first show to what extend the result of [3] - saving colors from the trivial bound of n on the chromatic number - extends to Max Coloring. Then we consider possible improvements of these results by considering the problem of saving colors/weight with respect to a better bound on the chromatic number. Finally, we consider the fixed parameterized tractability of Max Coloring in restricted graph classes under standard parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In batch scheduling, a color is a set of tasks (batch) processed together; then the weight of the color is the time to process the batch, and the total weight is the time to process every batch, i.e., every task.

  2. 2.

    A classical reduction from 3-SAT produces a graph with \(\varTheta (var+clauses)\) vertices and edges, where var and clauses are the number of variables and clauses, see for instance http://cgi.csc.liv.ac.uk/~igor/COMP309/3CP.pdf.

  3. 3.

    We use \(v'_i\) to denote vertices of \(G'\) (so \(v'_i=v_i\) for \(i<\ell \) and \(v'_i=v_{i+1}\) for \(i\ge \ell \)).

  4. 4.

    Thanks to Step 2, each color of size 1 is adjacent to all other colors, so we can reorder colors if needed to put colors of size 1 at the end while preserving the fact that each vertex in \(S_j\) is adjacent to each color \(S_i\), \(i<j\).

References

  1. Araújo, J., Nisse, N., Pérennes, S.: Weighted coloring in trees. SIAM J. Discrete Math. 28(4), 2029–2041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save k colors in O(\(\text{ n }^2\)) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: complexity and approximation. Discrete Appl. Math. 157(4), 819–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of compatible jobs. J. Sched. 10(2), 111–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Inf. Process. Lett. 61(2), 77–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hassin, R., Monnot, J.: The maximum saving partition problem. Oper. Res. Lett. 33(3), 242–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. Inf. Comput. 231, 70–88 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nonner, T.: Clique clustering yields a PTAS for max-coloring interval graphs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 183–194. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Escoffier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Escoffier, B. (2016). Saving Colors and Max Coloring: Some Fixed-Parameter Tractability Results. In: Heggernes, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2016. Lecture Notes in Computer Science(), vol 9941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53536-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53536-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53535-6

  • Online ISBN: 978-3-662-53536-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics