Skip to main content

Approximate Association via Dissociation

  • Conference paper
  • First Online:
  • 595 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9941))

Abstract

A vertex set X of a graph G is an association set if each component of \(G - X\) is a clique, or a dissociation set if each component of \(G - X\) is a single vertex or a single edge. Interestingly, \(G - X\) is then precisely a graph containing no induced \(P_3\)’s or containing no \(P_3\)’s, respectively. We observe some special structures and show that if none of them exists, then the minimum association set problem can be reduced to the minimum (weighted) dissociation set problem. This yields the first nontrivial approximation algorithm for the association set problem, with approximation ratio is 2.5. The reduction is based on a combinatorial study of modular decomposition of graphs free of these special structures. Further, a novel algorithmic use of modular decomposition enables us to implement this approach in \(O(m n + n^2)\) time.

Supported in part by NSFC under grants 61572414 and 61420106009, and RGC under grant 252026/15E.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If G is a clique or an independent set, then \(\widetilde{Q}(G)\) is isomorphic to G and is the largest quotient graph of G; if \(\widetilde{Q}(G)\) is prime, then it is the smallest nontrivial quotient graph of G, both cardinality-wise and inclusion-wise (see Lemma 5). Otherwise, there can be other quotient graph larger or smaller than \(\widetilde{Q}(G)\).

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), (Article 23) 1–27 (2008). doi:10.1145/1411509.1411513. A preliminary version appeared in STOC 2005

    Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004). doi:10.1023/B:MACH.0000033116.57574.95. A preliminary version appeared in FOCS 2002

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3/4), 281–297 (1999). doi:10.1089/106652799318274

    Article  Google Scholar 

  4. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016). doi:10.1007/s00224-015-9631-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruhn, H., Chopin, M., Joos, F., Schaudt, O.: Structural parameterizations for boxicity. Algorithmica 74(4), 1453–1472 (2016). doi:10.1007/s00453-015-0011-0. A preliminary version appeared in WG 2014

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996). doi:10.1016/0020-0190(96)00050-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Chen, J.: Cluster editing: kernelization based on edge cuts. Algorithmica 64(1), 152–169 (2012). doi:10.1007/s00453-011-9595-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005). doi:10.1016/j.jcss.2004.10.012. A preliminary version appeared in FOCS 2003

    Article  MathSciNet  MATH  Google Scholar 

  9. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014). doi:10.1007/s00224-013-9499-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting 3-vertex paths. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 238–249. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33461-5_20

    Google Scholar 

  12. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae 18, 25–66 (1967). (Trans: Maffray, F., Preissmann, M.: Perfect Graphs. In: Ramírez-Alfonsín, J.L., Reed, B.A. (eds.), pp. 25–66. Wiley (2001). doi:10.1007/BF02020961

    Google Scholar 

  13. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010). doi:10.1016/j.cosrev.2010.01.001

    Article  MATH  Google Scholar 

  14. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput. 14(1–2), 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010). doi:10.1007/s00224-008-9150-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). doi:10.1016/0022-0000(80)90060-4. Preliminary versions independently presented in STOC 1978

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: branching facilitated by modular decomposition. Theoret. Comput. Sci. 573, 63–70 (2015). doi:10.1016/j.tcs.2015.01.049

    Article  MathSciNet  MATH  Google Scholar 

  18. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In: Lingas, A., Karlsson, R.G., Carlsson, S. (eds.) Automata, Languages, Programming (ICALP). LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993). doi:10.1007/3-540-56939-1_60

    Chapter  Google Scholar 

  19. McConnell, R.M., Spinrad, J.P.: Modular decomposition, transitive orientation. Discrete Math. 201(1–3), 189–241 (1999). doi:10.1016/S0012-365X(98)00319-7. Preliminary versions appeared in SODA 1994 and SODA 1997

    Article  MathSciNet  MATH  Google Scholar 

  20. Sumner, D.P.: Graphs indecomposable with respect to the X-join. Discrete Math. 6(3), 281–298 (1973). doi:10.1016/0012-365X(73)90100-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Tu, J., Zhou, W.: A factor 2 approximation algorithm for the vertex cover \(\text{ P }_3\) problem. Inf. Process. Lett. 111(14), 683–686 (2011). doi:10.1016/j.ipl.2011.04.009

    Article  MATH  Google Scholar 

  22. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover \(\text{ P }_3\) problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011). doi:10.1016/j.tcs.2011.09.013

    Article  MathSciNet  MATH  Google Scholar 

  23. Wolk, E.S.: The comparability graph of a tree. Proc. Am. Math. Soc. 13, 789–795 (1962). doi:10.1090/S0002-9939-1962-0172273-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl. Math. 69(3), 247–255 (1996). doi:10.1016/0166-218X(96)00094-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981). doi:10.1137/0210022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

You, J., Wang, J., Cao, Y. (2016). Approximate Association via Dissociation. In: Heggernes, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2016. Lecture Notes in Computer Science(), vol 9941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53536-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53536-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53535-6

  • Online ISBN: 978-3-662-53536-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics