Skip to main content

Dual-Phase MIEC Membranes

  • Chapter
  • First Online:
Mixed Conducting Ceramic Membranes

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In this chapter, the critical factors affecting oxygen permeation through dual-phase membranes are discussed with a view to improving the permeability of dual-phase membranes. Based on the current knowledge in solid-state electrochemistry, two series of dual-phase membranes, made of ceria-based ionic conductors and Fe-based perovskite mixed conductors, are suggested as promising dual-phase materials. Oxygen exchange on the membrane surface, preparation methods, sintering temperature, and phase composition are all critical factors to affect the membrane performance and discussed with experiment demonstration. Other factors, such as the elemental composition of the phases, grain size, grain size ratio between the two phases, the conductivity of the mixed conducting phase, the microstructure, and thickness, all affect the oxygen transport process and deserve thorough investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen CS, Kruidhof H, Bouwmeester HJM (1997) Thickness dependence of oxygen permeation through stabilized bismuth oxide-silver composite. Solid State Ionics 99:215–219

    Article  CAS  Google Scholar 

  2. Chen CS, Boukamp BA, Bouwmeester HJM, Cao GZ, Kruidhof H, Winnubst AJA, Burggraaf AJ (1995) Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites. Solid State Ionics 76:23–28

    Article  CAS  Google Scholar 

  3. Lee TH, Yang YL, Jacobson AJ (2000) Electrical conductivity and oxygen permeation of Ag/BaBi8O13 composites. Solid State Ionics 134:331–339

    Article  CAS  Google Scholar 

  4. Mazanec TJ, Cable TL, Frye JG (1992) Electrocatalytic cells for chemical reaction. Solid State Ionics 53:111–118

    Article  Google Scholar 

  5. Chen CS, Kruidhof H, Bouwmeester HJM, Verweij H, Burggraaf AJ (1996) Oxygen permeation through oxygen ion oxide-noble metal dual phase composites. Solid State Ionics 86–88:569–572

    Article  Google Scholar 

  6. Chen CS, Burggraaf AJ (1999) Stabilized bismuth oxide noble metal mixed conducting composites as high temperature oxygen separation membranes. J Appl Electrochem 29:355–360

    Article  CAS  Google Scholar 

  7. Kim J, Lin YS (2000) Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes. J Membr Sci 167:123–133

    Article  CAS  Google Scholar 

  8. Kim J, Lin YS (2000) Synthesis and oxygen-permeation properties of thin YSZ/Pd composite membranes. AIChE J 46:1521–1529

    Article  CAS  Google Scholar 

  9. Kharton VV, Kovalevsky AV, Viskup AP, Figueiredo FM, Yaremchenko AA, Naumovich EN, Marques FMB (2000) Oxygen permeability of Ce0.8Gd0.2O2−δ -La0.7Sr0.3MnO3−δ composite membranes. J Electrochem Soc 147:2814–2821

    Article  CAS  Google Scholar 

  10. Kharton VV, Kovalevsky AV, Viskup AP, Shaula AL, Figueiredo FM, Naumovich EN, Marques FMB (2003) Oxygen transport in Ce0.8Gd0.2O2−δ -based composite membranes. Solid State Ionics 160:247–258

    Article  CAS  Google Scholar 

  11. Sirman JD, Chen JC (2003) Ceramic membrane structure and oxygen separation method. US Patent 6,514,314

    Google Scholar 

  12. Nigge U, Wiemhofer HD, Romer EWJ, Bouwmeester HJM, Schulte TR (2002) Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3−delta as oxygen permeable membranes for exhaust gas sensors. Solid State Ionics 146:163–174

    Article  CAS  Google Scholar 

  13. Shaula AL, Kharton VV, Marques FMB (2004) Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3-(La0.9Sr0.1)0.98Ga0.8Mg0.2O3 composites. J Eur Ceram Soc 24:2631–2639

    Article  CAS  Google Scholar 

  14. Yi JX, Zuo YB, Liu W, Winnubst L, Chen CS (2006) Oxygen permeation through a Ce0.8Sm0.2O2−δ -La0.8Sr0.2CrO3−δ dual-phase composite membrane. J Membr Sci 280:849–855

    Article  CAS  Google Scholar 

  15. Wang B, Zhan MC, Zhu DC, Liu W, Chen CS (2006) Oxygen permeation and stability of Zr0.8Y0.2O1.9-La0.8Sr0.2CrO3−δ dual-phase composite. J Solid State Electrochem 10:625–628

    Article  CAS  Google Scholar 

  16. Luo HX, Jiang HQ, Efimov K, Liang FY, Wang HH, Caro J (2011) CO2-tolerant oxygen-permeable Fe2O3-Ce0.9Gd0.1O2−δ dual phase membranes. Ind Eng Chem Res 50:13508–13517

    Article  CAS  Google Scholar 

  17. Luo HX, Jiang HQ, Efimov K, Wang HH, Caro J (2011) Influence of the preparation methods on the microstructure and oxygen permeability of a CO2-stable dual phase membrane. AIChE J 57:2738–2745

    Article  CAS  Google Scholar 

  18. Garcia-Fayos J, Balaguer M, Serra JM (2015) Dual-phase oxygen transport membranes for stable operation in environments containing carbon dioxide and sulfur dioxide. ChemSusChem 8:4242–4249

    Article  CAS  Google Scholar 

  19. Takamura H, Okumura K, Koshino Y, Kamegawa A, Okada M (2004) Oxygen permeation properties of ceria-ferrite-based composites. J Electroceram 13:613–618

    Article  CAS  Google Scholar 

  20. Takamura H, Kobayashi T, Kasahara T, Kamegawa A, Okada M (2006) Oxygen permeation and methane reforming properties of ceria-based composite membranes. J Alloy Compd 408:1084–1089

    Article  Google Scholar 

  21. Takamura H, Sugai H, Watanabe M, Kasahara T, Kamegawa A, Okada M (2006) Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites. J Electroceram 17:741–748

    Article  CAS  Google Scholar 

  22. Takamura H, Ogawa M, Suehiro K, Takahashi H, Okada M (2008) Fabrication and characteristics of planar-type methane reformer using ceria-based oxygen permeable membrane. Solid State Ionics 179:1354–1359

    Article  CAS  Google Scholar 

  23. Zhu XF, Yang WS (2008) Composite membrane based on ionic conductor and mixed conductor for oxygen permeation. AIChE J 54:665–672

    Article  CAS  Google Scholar 

  24. Zhu XF, Li QM, Cong Y, Yang WS (2008) Syngas generation in a membrane reactor with a highly stable ceramic composite membrane. Catal Commun 10:309–312

    Article  CAS  Google Scholar 

  25. Zhu XF, Wang HH, Yang WS (2008) Relationship between homogeneity and oxygen permeability of composite membranes. J Membr Sci 39:120–127

    Article  Google Scholar 

  26. Li QM, Zhu XF, Yang WS (2008) Single-step fabrication of asymmetric dual-phase composite membranes for oxygen separation. J Membr Sci 325:11–15

    Article  CAS  Google Scholar 

  27. Zhu XF, Li QM, He YF, Cong Y, Yang WS (2010) Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors. J Membr Sci 360:454–460

    Article  CAS  Google Scholar 

  28. Li QM, Zhu XF, He YF, Cong Y, Yang WS (2011) Effects of sintering temperature on properties of dual-phase oxygen permeation membranes. J Membr Sci 367:134–140

    Article  CAS  Google Scholar 

  29. Zhu XF, Liu HY, Li QM, Cong Y, Yang WS (2011) Unsteady-state permeation and surface exchange of dual-phase membranes. Solid State Ionics 185:27–31

    Article  CAS  Google Scholar 

  30. Zhu XF, Liu HY, Cong Y, Yang WS (2012) Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chem Commun 48:251–253

    Article  CAS  Google Scholar 

  31. Zhu XF, Li MR, Liu HY, Zhang TY, Cong Y, Yang WS (2012) Design and experimental investigation of oxide ceramic dual-phase membranes. J Membr Sci 394–395:120–130

    Article  Google Scholar 

  32. Zhu XF, Liu Y, Cong Y, Yang WS (2013) Ce0.85Sm0.15O1.925–Sm0.6Sr0.4Al0.3Fe0.7O3 dual-phase membranes: One-pot synthesis and stability in a CO2 atmosphere. Solid State Ionics 253:57–63

    Article  CAS  Google Scholar 

  33. Li HB, Liu Y, Zhu XF, Cong Y, Xu SP, Xu WQ, Yang WS (2013) Oxygen permeation through Ca-contained dual-phase membranes for oxyfuel CO2 capture. Sep Purif Technol 114:31–37

    Article  CAS  Google Scholar 

  34. Li HB, Zhu XF, Liu Y, Wang WP, Yang WS (2014) Comparative investigation of dual-phase membranes containing cobalt and iron-based mixed conducting perovskite for oxygen permeation. J Membr Sci 462:170–177

    Article  CAS  Google Scholar 

  35. Cao ZW, Zhu XF, Li WP, Xu B, Yang LN, Yang WS (2015) Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Mater Lett 147:88–91

    Article  CAS  Google Scholar 

  36. Cai LL, Li WP, Cao ZW, Zhu XF, Yang WS (2016) Improving oxygen permeation of MIEC membrane reactor by enhancing the electronic conductivity under intermediate-low oxygen partial pressures. J Membr Sci. 520:607–615

    Google Scholar 

  37. Li D, Wang XP, Zhuang Z, Wang JX, Li C, Fang QF (2009) Reducibility study of oxide-ion conductors La2−xBaxMo2−yAyO9−δ (A = W, Al, Ga) assessed by impedance spectroscopy. Mater Res Bull 44:446–450

    Article  CAS  Google Scholar 

  38. Sun M, Chen XW, Hong L (2013) Influence of the interfacial phase on the structural integrity and oxygen permeability of a dual-phase membrane. ACS Appl Mater Interfaces 5:9067–9074

    Article  CAS  Google Scholar 

  39. Read MSD, Islam MS, Watson GW, King F, Hancock FE (2000) Defect chemistry and surface properties of LaCoO3. J Mater Chem 10:2298–2305

    Article  CAS  Google Scholar 

  40. Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93

    Article  CAS  Google Scholar 

  41. Peng RR, Xia CR, Fu QX, Meng GY, Peng DK (2002) Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine-nitrate process. Mater Lett 56:1043–1047

    Article  CAS  Google Scholar 

  42. Wu K, Xie S, Jiang GS, Liu W, Chen CS (2001) Oxygen permeation through (Bi2O3)0.74(SrO)0.26-Ag (40% v/o) composite. J Membr Sci 188:189–193

    Article  CAS  Google Scholar 

  43. Li W, Liu JJ, Chen CS (2009) Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation. J Membr Sci 340:266–271

    Article  CAS  Google Scholar 

  44. Fang W, Gao JF, Chen CS (2013) La0.8Sr0.2Cr0.5Fe0.5O3−δ (LSCF)-Zr0.8Y0.2O2−δ (YSZ) based multilayer membrane for CO2 decomposition. Ceram Int 39:7269–7272

    Article  CAS  Google Scholar 

  45. Liu JJ, Liu T, Wang WD, Gao JF, Chen CS (2012) Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3−δ dual-phase composite hollow fiber membrane targeting chemical reactor applications. J Membr Sci 389:435–440

    Article  CAS  Google Scholar 

  46. Fang W, Steinbach F, Chen CS, Feldhoff A (2015) An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chem Mater 27:7820–7826

    Article  CAS  Google Scholar 

  47. Wang ZT, Sun WP, Zhu ZW, Liu T, Liu W (2013) A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane. ACS Appl Mater Interfaces 5:11038–11043

    Article  CAS  Google Scholar 

  48. Luo HX, Efimov K, Jiang HQ, Feldhoff A, Wang HH, Caro J (2011) CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angew Chem Int Ed 50:759–763

    Article  CAS  Google Scholar 

  49. Luo HX, Jiang HQ, Klande T, Cao ZW, Liang FY, Wang HH, Caro J (2012) Novel cobalt-free, noble metal-free oxygen-permeable 40Pr0.6Sr0.4FeO3−δ -60Ce0.9Pr0.1O2−δ dual-phase membrane. Chem Mater 24:2148–2154

    Article  CAS  Google Scholar 

  50. Joo JH, Park GS, Yoo C-Y, Yu JH (2013) Contribution of the surface exchange kinetics to the oxygen transport properties in Gd0.1Ce0.9O2−δ -La0.6Sr0.4Co0.2Fe0.8O3−δ dual-phase membrane. Solid State Ionics 253:64–69

    Article  CAS  Google Scholar 

  51. Fang W, Liang FY, Cao ZW, Steinbach F, Feldhoff A (2015) A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability. Angew Chem Int Ed 54:4847–4850

    Article  CAS  Google Scholar 

  52. Cheng HW, Luo LF, Yao WL, Lu XG, Zou XL, Zhou ZF (2015) Novel cobalt-free CO2-tolerant dual-phase membranes of Ce0.8Sm0.2O2−δ -Ba0.95La0.05Fe1−xZrxO3−δ for oxygen separation. J Membr Sci 492:220–229

    Article  CAS  Google Scholar 

  53. Xue J, Liao Q, Wei YY, Li Z, Wang HH (2013) A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2−δ -40Ba0.5Sr0.5Co0.8Fe0.2O3−δ dual phase membrane. J Membr Sci 443:124–130

    Article  CAS  Google Scholar 

  54. Chen T, Zhao HL, Xie ZX, Xu NS, Lu Y (2015) Oxygen permeability of Ce0.8Sm0.2O2−δ -LnBaCo2O5+δ (Ln = La, Nd, Sm, and Y) dual-phase ceramic membranes. Ionics 21:1683–1692

    Article  CAS  Google Scholar 

  55. Chen T, Zhao HL, Xie ZX, Wang J, Lu Y, Xu NS (2013) Ce0.8Sm0.2O2−δ -PrBaCo2O5+δ dual-phase membrane: novel preparation and improved oxygen permeability. J Power Sources 223:289–292

    Article  CAS  Google Scholar 

  56. Qi XW, Lin YS, Swartz SL (2000) Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods. Ind Eng Chem Res 39:646–653

    Article  CAS  Google Scholar 

  57. Tan L, Gu XH, Yang L, Jin WQ, Zhang LX, Xu NP (2003) Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes. J Membr Sci 212:157–165

    Article  CAS  Google Scholar 

  58. Zhu XF, Cong Y, Yang WS (2006) Effects of synthesis methods on the oxygen permeable BaCe0.15Fe0.85O3−δ ceramic membranes. J Membr Sci 283:158–163

    Article  CAS  Google Scholar 

  59. Kharton VV, Marques FMB (2002) Mixed ionic-electronic conductors: effects of ceramic microstructure on transport properties. Curr Opin Solid State Mater Sci 6:261–269

    Article  CAS  Google Scholar 

  60. Deng ZQ, Liu W, Peng DK, Chen CS, Yang WS (2004) Combustion synthesis, annealing, and oxygen permeation properties of SrFeCo0.5Oy membranes. Mater Res Bull 39:963–969

    Article  CAS  Google Scholar 

  61. Tai L-W, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ionics 76:259–271

    Article  CAS  Google Scholar 

  62. Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18:527–531

    Article  CAS  Google Scholar 

  63. Hunt AG (2005) Percolation theory for flow in porous media. Lecture notes in physics, vol 674. Springer, Berlin

    Google Scholar 

  64. Feng ZT, Wang JF, Zhao D (2011) Effect of rock nonhomogeneous characteristics on threshold permeability. Adv Mater Res 243–249:3217–3222

    Article  Google Scholar 

  65. Chen T, Zhao HL, Xie ZX, Feng LC, Lu XG, Ding WZ, Li FS (2012) Electrical conductivity and oxygen permeability of Ce0.8Sm0.2O2−δ -PrBaCo2O5+δ dual-phase composites. Int J Hydrog Energy 37:5277–5285

    Article  CAS  Google Scholar 

  66. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729

    Article  CAS  Google Scholar 

  67. Ishihara T, Yamada T, Arikawa H, Nishiguchi H, Takita Y (2000) Mixed electronic-oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni doped LaGaO3 perovskite oxide. Solid State Ionics 135:631–636

    Article  CAS  Google Scholar 

  68. Yaremchenko AA, Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN, Lapchuk NM (1999) Mixed electronic and ionic conductivity of LaCo(M)O3−δ (M = Ga, Cr, Fe or Ni).: V. Oxygen permeability of Mg-doped La(Ga, Co)O3−δ perovskites. Solid State Ionics 120:65–74

    Article  CAS  Google Scholar 

  69. Li SG, Jin WQ, Huang P, Xu NP, Shi J, Lin YS, Hu MZ-C, Payzant A (1999) Comparison of oxygen permeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3−δ (A = Ba, Sr, Ca) membranes. Ind Chem Eng Res 38:2963–2972

    Article  CAS  Google Scholar 

  70. Yoshida H, Miura K, Fujita J-I, Inagaki T (1999) Effect of gallia addition on the sintering behavior of samaria-doped ceria. J Am Ceram Soc 82:219–221

    Article  CAS  Google Scholar 

  71. Efimov K, Klande T, Juditzki N, Feldhoff A (2012) Ca-containing CO2-tolerant perovskite materials for oxygen separation. J Membr Sci 389:205–215

    Article  CAS  Google Scholar 

  72. Zeng PY, Ran R, Chen ZH, Gu HX, Shao ZP, da Costa JCD, Liu SM (2007) Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3−δδ oxygen selective membranes. J Membr Sci 302:171–179

    Article  CAS  Google Scholar 

  73. Kharton VV, Tikhonovich VN, Li SB, Naumovich EN, Kovalevsky AV, Viskup AP, Bashmakov IA, Yaremchenko AA (1998) Ceramic microstructure and oxygen permeability of SrCo(Fe, M)O3−δ (M = Cu or Cr) perovskite membranes. J Electrochem Soc 145:1363–1373

    Article  CAS  Google Scholar 

  74. Tan L, Gu XH, Yang L, Zhang LX, Wang CQ, Xu NP (2003) Influence of sintering condition on crystal structure, microstructure, and oxygen permeability of perovskite-related type Ba0.8Sr0.2Co0.8Fe0.2O3−δδ membranes. Sep Purif Technol 32:307–312

    Article  CAS  Google Scholar 

  75. Wang HH, Tablet C, Feldhoff A, Caro H (2005) Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δδ membranes. J Membr Sci 262:20–26

    Article  CAS  Google Scholar 

  76. Joo JH, Yun KS, Yoo C-Y, Yu JH (2014) Novel oxygen transport membranes with tunable segmented structures. J Mater Chem A 2:8174–8178

    Article  CAS  Google Scholar 

  77. Zhang K, Shao ZP, Li CZ, Liu SM (2012) Novel CO2-tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. Energy Environ Sci 5:5257–5264

    Article  CAS  Google Scholar 

  78. Zhang K, Liu LH, Shao ZP, Xu R, da Costa JCD, Wang SB, Liu SM (2013) Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. J Mater Chem A 1:9150–9156

    Article  CAS  Google Scholar 

  79. Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horna Y (2013) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2:F77–F81

    Article  CAS  Google Scholar 

  80. Weirich M, Gurauskis J, Gil V, Wiik K, Einarsrud M-A (2012) Preparation of lanthanum tungstate membranes by tape casting technique. Int J Hydrog Energy 37:8056–8061

    Article  CAS  Google Scholar 

  81. Julian A, Juste E, Geffroy PM, Coudert V, Degot S, Del Gallo P, Richet N, Chartier T (2009) Elaboration of La0.8Sr0.2Fe0.7Ga0.3O3−δ /La0.8M0.2FeO3−δ (M = Ca, Sr and Ba) asymmetric membranes by tape-casting and co-firing. J Membr Sci 333:132–140

    Article  CAS  Google Scholar 

  82. Koh YH, Jun IK, Sun JJ, Kim HE (2006) In situ fabrication of a dense/porous Bi-layered ceramic composite using freeze casting of a ceramic-camphene slurry. J Am Ceram Soc 89:763–766

    Article  CAS  Google Scholar 

  83. Huang H, Cheng SY, Gao JF, Chen CS, Yi JX (2014) Phase-inversion tape-casting preparation and significant performance enhancement of Ce0.9Gd0.1O1.95-La0.6Sr0.4Co0.2Fe0.8O3−δ dual-phase asymmetric membrane for oxygen separation. Mater Lett 137:245–248

    Article  CAS  Google Scholar 

  84. He W, Huang H, Gao JF, Winnubst L, Chen CS (2014) Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes. J Membr Sci 452:294–299

    Article  CAS  Google Scholar 

  85. Steele BCH (1992) Oxygen ion conductors and their technological applications. Mater Sci Eng B 13:79–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, X., Yang, W. (2017). Dual-Phase MIEC Membranes. In: Mixed Conducting Ceramic Membranes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53534-9_7

Download citation

Publish with us

Policies and ethics