Skip to main content

Fabrication and Characterization of MIEC Membranes

  • Chapter
  • First Online:
Mixed Conducting Ceramic Membranes

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Preparation method has a significant influence on the performance of MIEC membranes, because the membranes derived from different methods have different microstructures, defects, impurities, etc. In this chapter, the experimental methods related to the MIEC membranes are introduced, including the methods for the synthesis of ceramic powders, for the fabrication of MIEC membranes, and for the performance testing and characterization. The advantages and disadvantages of the methods for preparing ceramic powders and fabricating MIEC membranes are shown in this chapter to facilitate selecting proper methods in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. J Membr Sci 172:177–188

    Article  CAS  Google Scholar 

  2. Shao ZP (2000) Mixed oxygen ionic and electronic conducting membrane and its application in the partial oxidation of methane to synthesis gas process. Dissertation, University of Chinese Academy of Science

    Google Scholar 

  3. Peng RR, Xia CR, Fu QX, Meng GY, Peng DK (2002) Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine-nitrate process. Mater Lett 56:1043–1047

    Article  CAS  Google Scholar 

  4. Tok AIY, Luo LH, Boey FYC (2006) Consolidation and properties of Gd0.1Ce0.9O1.95 nanoparticles for solid-oxide fuel cell electrolytes. J Mater Res 21:119–124

    Article  CAS  Google Scholar 

  5. Liang JP (2015) Low temperature fabrication of dense gadolinia-doped ceria electrolyte with enhanced electrical conductivity. Electrochim Acta 178:321–328

    Article  CAS  Google Scholar 

  6. Wei Y (2012) Synthesis and optical properties of self-assembled 2D layered organic-inorganic perovskites for optoelectronics. Dissertation, l’École normale Supérieure de Cachan

    Google Scholar 

  7. Messing GL, Zhang S-C, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726

    Article  CAS  Google Scholar 

  8. Meng XX, Pang ZB, Tan XY, Meng B, Yang NT (2006) Preparation of La0.6Sr0.4Co0.2Fe0.8O3−δ ultra fine powder by spray pyrolysis method and its electrical property. Chin J Nonferrous Metals 16:2077–2082

    CAS  Google Scholar 

  9. Marrero-Lopez D, dos Santos-Gomez L, Canales-Vazquez J, Martin F, Ramos-Barrado JR (2014) Stability and performance of nanostructured La0.8Sr0.2MnO3 cathodes deposited by spray-pyrolysis. Electrochim Acta 134:159–166

    Article  CAS  Google Scholar 

  10. Marrero-Lopez D, Romero R, Martin F, Ramos-Barrado JR (2014) Effect of the deposition temperature on the electrochemical properties of La0.6Sr0.4Co0.8Fe0.2O3−δ cathode prepared by conventional spray-pyrolysis. J Power Sources 255:308–317

    Article  CAS  Google Scholar 

  11. Benel C, Darbandi AJ, Djenadic R, Evans A, Tolke R, Prestat M, Hahn H (2013) Synthesis and characterization of nanoparticulate La0.6Sr0.4CoO3-δ cathodes for thin-film solid oxide fuel cells. J Power Sources 229:258–264

    Google Scholar 

  12. Suda S, Takahashi S, kawana M, Yoshida H, Inagaki T (2006) Effects of atomization conditions on morphology and SOFC anode performance of spray pyrolyzed NiO-Sm0.2Ce0.8O1.9-composite particles. Solid State Ionics 177:1219–1225

    Google Scholar 

  13. Maric R, Fukui T, Ohara S, Yoshida H, Nishimura M, Inagaki T, Miura K (2000) Powder prepared by spray pyrolysis as an electrode material for solid oxide fuel cells. J Mater Sci 35:1397–1404

    Article  CAS  Google Scholar 

  14. Kumar A, Devi PS, Das Sharma A, Maiti HS (2005) A novel spray-pyrolysis technique to produce nanocrystalline lanthanum strontium manganite powder. J Am Ceram Soc 88:971–973

    Article  CAS  Google Scholar 

  15. Wei X, Hug P, Figi R, Trottmann M, Weidenkaff A, Ferri D (2010) Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion. Appl Catal B Environ 94:27–37

    Article  CAS  Google Scholar 

  16. Qi XW, Lin YS, Swartz SL (2000) Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods. Ind Eng Chem Res 39:646–653

    Article  CAS  Google Scholar 

  17. Sfeir J, Vaucher S, Holtappels P, Vogtc U, Schindler H-J, Van Herle J, Suvorova E, Buffat P, Perret D, Xanthopoulos N, Bucheli O (2005) Characterization of perovskite powders for cathode and oxygen membranes made by different synthesis routes. J Eur Ceram Soc 25:1991–1995

    Article  CAS  Google Scholar 

  18. Rahaman MN (2003) Ceramic processing and sintering. 2nd version, CRC press, Boca Raton

    Google Scholar 

  19. Bender W (2007) Types of extrusion units. In: HÓ“ndle F (ed) Extrusion in ceramics. Springer, Berlin, p p73

    Google Scholar 

  20. Clemens F (2007) Thermoplastic extrusion for ceramic bodies. In: Hӓndle F (ed) Extrusion in ceramics. Springer, Berlin, pp p307–p309

    Google Scholar 

  21. Zhang YW, Su K, Zeng FL, Ding WZ, Lu XG (2013) A novel tubular oxygen-permeable membrane reactor for partial oxidation of CH4 in coke oven gas to syngas. Int J Hydrog Energy 38:8783–8789

    Article  CAS  Google Scholar 

  22. Zyryanov VV (2009) Fabrication of multilayer ceramic membranes. Asia Pac J Chem Eng 4:285–290

    Article  CAS  Google Scholar 

  23. Howatt GN, Breckenridge RG, Brownlow JM (1947) Fabrication of thin ceramic sheets for capacitors. J Am Ceram Soc 30:237–242

    Article  CAS  Google Scholar 

  24. Mistler RE, Twiname ER (2000) Tape casting: theory and practice. Wiley, Westerville

    Google Scholar 

  25. Miller CF, Chen J, Carolan MF, Foster EP (2014) Advances in ion transport membrane technology for syngas production. Catal Today 228:152–157

    Article  CAS  Google Scholar 

  26. Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 377:198–205

    Article  CAS  Google Scholar 

  27. Cao ZW, Zhu XF, Li WP, Xu B, Yang LN, Yang WS (2015) Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Mater Lett 147:88–91

    Article  CAS  Google Scholar 

  28. Li K (2007) Ceramic membranes for separation and reaction. Wiley, Chichester

    Book  Google Scholar 

  29. Li DF, Chung TS, Wang R, Liu Y (2002) Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. J Membr Sci 198:211–223

    Article  CAS  Google Scholar 

  30. Wu ZT, Wang B, Li K (2010) A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion. J Membr Sci 352:63–70

    Article  CAS  Google Scholar 

  31. Li T, Wu ZT, Li K (2014) Single-step fabrication and characterisations of triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells (SOFCs). J Membr Sci 449:1–8

    Article  CAS  Google Scholar 

  32. Othman MHD, Droushiotis N, Wu ZT, Kelsall G, Li K (2011) High-performance, anode-supported, microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers. Adv Mater 23:2480–2483

    Article  CAS  Google Scholar 

  33. Chen IW, Wang XH (2000) Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404:168–171

    Article  CAS  Google Scholar 

  34. Figueiredo FM, Kharton VV, Viskup AP, Frade JR (2004) Surface enhanced oxygen permeation in CaTi1−x FexO3−δ ceramic membranes. J Membr Sci 236:73–80

    Article  CAS  Google Scholar 

  35. Teraoka Y, Zhang HM, Furukawa N, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14:1743–1746

    Article  Google Scholar 

  36. Zhu XF, Wang HH, Cong Y, Yang WS (2006) Structure and oxygen permeation of cerium light doped BaFeO3−δ ceramic membranes. Solid State Ionics 117:2917–2921

    Article  Google Scholar 

  37. Steele BCH (1968). In: Wachtman JB, Franklin AD (eds) Mass transport in oxides. NBS Special Publication 296. p 165

    Google Scholar 

  38. Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) Thermodynamics and transport of ionic and electronic defects in crystalline oxides. J Am Ceram Soc 80:2175–2198

    Article  CAS  Google Scholar 

  39. Tikhonovich VN, Zharkovskaya OM, Naumovich EN, Bashmakov IA, Kharton VV, Vecher AA (2003) Oxygen nonstoichiometry of Sr(Co, Fe)O3−δ-based perovskites I. Coulometric titration of SrCo0.85Fe0.10Cr0.05O3−δ by the two-electrode technique. Solid State Ionics 160:259–270

    Article  CAS  Google Scholar 

  40. Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28

    Article  CAS  Google Scholar 

  41. Leonide A, Ruger B, Weber A, Meulenberg WA, Ivers-Tiffee E (2010) Impedance study of alternative (La,Sr)FeO3−δ and (La,Sr)(Co,Fe)O3−δ MIEC cathode compositions. J Electrochem Soc 157:B234–B239

    Article  CAS  Google Scholar 

  42. Diethelm S, Van Herle J (2004) Electrochemical characterisation of oxygen nonstoichiometry and transport in mixed conducting oxides-application to La0.4Ba0.6Fe0.8Co0.2O3−δ. Solid State Ionics 174:127–134

    CAS  Google Scholar 

  43. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  44. Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  45. Bouwmeester HJM, Song CL, Zhu JJ, Yi JX, van Sint Annaland M, Boukamp BA (2009) A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Phys Chem Chem Phys 11:9640–9643

    Article  CAS  Google Scholar 

  46. Armstrong EN, Duncan KL, Wachsman ED (2011) Surface exchange coefficients of composite cathode materials using in situ isothermal isotope exchange. J Electrochem Soc 158:B283–B289

    Article  CAS  Google Scholar 

  47. Armstrong EN, Duncan KL, Oh DJ, Weaver JF, Wachsman ED (2011) Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes. J Electrochem Soc 158:B492–B499

    Article  CAS  Google Scholar 

  48. Armstrong EN, Duncan KL, Wachsman ED (2013) Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials. Phys Chem Chem Phys 15:2298–2308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, X., Yang, W. (2017). Fabrication and Characterization of MIEC Membranes. In: Mixed Conducting Ceramic Membranes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53534-9_4

Download citation

Publish with us

Policies and ethics