Skip to main content

Ionic Conductors and Aspects Related to High Temperature

  • Chapter
  • First Online:
Mixed Conducting Ceramic Membranes

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1192 Accesses

Abstract

The ionic conductivity of perovskite-type MIEC membranes is several orders of magnitude lower than their electronic conductivity; however, the ambipolar conductivity determines the diffusion rate of oxygen ions in the membrane bulk. Therefore, the improvement of oxygen ionic conductivity is the key to enhance the oxygen permeability of an MIEC material. In this chapter, the common oxygen ionic conductors with fluorite and perovskite structures are introduced in detail, and other types of oxygen ionic conductors, such as Bi4V2O11, La2Mo2O9, and La10-x Si6O26+y , are briefly presented. The critical factors influencing the oxygen ionic conductivity are discussed for the perovskite-type oxygen ionic conductors and MIEC conductors. All the oxygen ionic conducting materials can be made into MIEC membranes for oxygen permeation as long as they are properly doped by elements with variable valence states or mixed with a secondary phase with electronic conduction. MIEC membranes are all operated at high temperatures, and thus, the special properties related to high temperature, such as cationic diffusion, kinetic demixing, thermal expansion, chemical expansion, and creep, are briefly introduced to show that several factors should be considered to design or select a practically applicable MIEC membrane material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide Ion conductors for solid oxide fuel cells. Ionics 4:403–408

    Article  CAS  Google Scholar 

  2. Dixon M, Lagrange LD, Merten U, Miller CF, Porter JT (1963) Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 110:276–280

    Article  CAS  Google Scholar 

  3. Strickler DW, Carlson WG (1965) Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems. J Am Ceram Soc 48:286–289

    Article  CAS  Google Scholar 

  4. Hohnke DK (1981) Ionic conduction in doped oxides with the fluorite structure. Solid State Ionics 5:531–534

    Article  CAS  Google Scholar 

  5. Singhal SC, Kendall K (2002) High temperature solid oxide fuel cells: fundamentals, design and applications. Mater today 5:55

    Google Scholar 

  6. Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics 121:133–139

    Article  CAS  Google Scholar 

  7. Badwal SPS, Ciacchi FT, Milosevic D (2000) Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics 136:91–99

    Article  Google Scholar 

  8. Haering C, Roosen A, Schichl H, Schnöller M (2005) Degradation of the electrical conductivity in stabilized zirconia system: part II: Scandia-stabilized zirconia. Solid State Ionics 176:261–268

    Article  CAS  Google Scholar 

  9. Lee DS, Kim WS, Choi SH, Kim J, Lee HW, Lee JH (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176:33–39

    Article  CAS  Google Scholar 

  10. Liu M, He CG, Wang JX, Wang WG, Wang ZW (2010) Investigation of (CeO2) x (Sc2O3)0.11−x (ZrO2)0.89 (x = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. J Alloy Compd 502:319–323

    Article  CAS  Google Scholar 

  11. Kawamura K, Watanabe K, Hiramatsu T, Kaimai A, Nigara Y, Kawada T, Mizusaki J (2001) Electrical conductivities of CaO doped ZrO2-CeO2 solid solution system. Solid State Ionics 144:11–18

    Article  CAS  Google Scholar 

  12. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16

    Article  CAS  Google Scholar 

  13. Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18:527–531

    Article  CAS  Google Scholar 

  14. Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75

    Article  CAS  Google Scholar 

  15. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ionics 52:165–172

    Article  CAS  Google Scholar 

  16. Zha SW, Xia CR, Gy M (2003) Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48

    Article  CAS  Google Scholar 

  17. Kudo T, Obayashi H (1976) Mixed electrical conduction in the fluorite-type Ce1-x Gdx O2-x/2. J Electrochem Soc 123:415–419

    Article  CAS  Google Scholar 

  18. Steele BCH (2000) Appraisal of Ce1−y Gd y O2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129:95–110

    Article  CAS  Google Scholar 

  19. Kim N, Kim BH, Lee D (2000) Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J Power Sources 90:139–143

    Article  CAS  Google Scholar 

  20. Wang FY, Chen SY, Cheng S (2004) Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem Commun 6:743–746

    Article  CAS  Google Scholar 

  21. Mori T, Yamamura H, Saito S (1996) Preparation of an alkali-element-doped CeO2-Sm2O3 system and its operation properties as the electrolyte in planar solid oxide fuel cells. J Am Ceram Soc 79:3309–3312

    Article  CAS  Google Scholar 

  22. Parkash O, Singh N, Singh NK, Kumar D (2012) Preparation and characterization of ceria co-doped with Ca and Mg. Solid State Ionics 212:100–105

    Article  CAS  Google Scholar 

  23. Kahlaoui M, Chefi S, Inoubli A, Madani A, Chefi C (2013) Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+, and Eu3+ citric acid-nitrate prepared samarium-doped ceria ceramics. Ceram Int 39:3873–3879

    Article  CAS  Google Scholar 

  24. Guan XF, Zhou HP, Wang YN, Zhang J (2008) Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J Alloy Compd 464:310–316

    Article  CAS  Google Scholar 

  25. Sha XQ, Lu Z, Huang XQ, Miao JP, Jia L, Xin XS, Su WH (2006) Preparation and properties of rare earth co-doped Ce0.8Sm0.2−x Y x O1.9 electrolyte materials for SOFC. J Alloy Compd 424:315–321

    Article  CAS  Google Scholar 

  26. Ma L, Zhao K, Kim BH, Li Q, Huang JL (2015) Electrochemical performance of solid oxide fuel cells with Sm, Nd co-doped Ce0.85(Sm x Nd1−x )0.15O2−δ electrolyte. Ceram Int 41:6391–6397

    Article  CAS  Google Scholar 

  27. Dikmen S (2010) Effect of co-doping with Sm3+, Bi3+, La3+, and Nd3+ on the electrochemical properties of hydrothermally prepared gadolinium-doped ceria ceramics. J Alloy Compd 494:106–112

    Article  Google Scholar 

  28. Shuk P, Greenblatt M (1999) Hydrothermal synthesis and properties of mixed conductors based on Ce1−x Pr x O2−δ solid solutions. Solid State Ionics 116:217–223

    Article  CAS  Google Scholar 

  29. Fagga DP, Kharton VV, Shaula A, Marozau IP, Frade JR (2005) Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr, Zr)O2−δ. Solid State Ionics 176:1723–1730

    Article  Google Scholar 

  30. Fagg DP, Shaula AL, Kharton VV, Frade JR (2007) High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. J Merbrane Sci 299:1–7

    Article  CAS  Google Scholar 

  31. Balaguer M, Solís C, Serra JM (2011) Study of the transport properties of the mixed ionic electronic conductor Ce1−x Tb x O2−δ + Co (x = 0.1, 0.2) and evaluation as oxygen-transport membrane. Chem Mater 23:2333–2343

    Article  CAS  Google Scholar 

  32. Gattow G, Schroder H (1962) Über Wismutoxide. III. Die kristallsttruker der hochtemperaturemodikation von Wismut (III)-oxid (δ-Bi2O3). Z Anorg Allg Chem 318:176–189

    Article  CAS  Google Scholar 

  33. Willis BTM (1965) The anomalous behavior of the neutron reflections of fluorite. Acta Crystallogr 18:75–76

    Article  CAS  Google Scholar 

  34. Verkerk MJ, Burggraaf AJ (1981) High oxygen ion conduction in sintered oxides of Bi2O3-Ln2O3 system. Solid State Ionics 3(4):463–467

    Article  Google Scholar 

  35. Sillén LG (1937) X-ray studies on bismuth trioxide. Ark Kemi Mineral Geol 12A:1–15

    Google Scholar 

  36. Zav”yalova AA, Imamov RM (1969) Cubic structure of δ-bismuth sesquioxide. Kristallograya 14:331–333

    Google Scholar 

  37. Medernach JW, Snyder RL (1978) Powder diffraction patterns and structure of the bismuth oxides. J Am Ceram Soc 61:494–497

    Article  CAS  Google Scholar 

  38. Jacobs PWM, Macdonaill DA (1986) Computer simulation of bismuth oxide. Solid State Ionics 18–19:209–213

    Article  Google Scholar 

  39. Harwig HA (1978) Structure of bismuthsesquioxide: the α, β, γ, and δ-phase. Z Anorg Allg Chem 444:151–166

    Article  CAS  Google Scholar 

  40. Battle PD, Catlow RA, Drennan J, Murray AD (1983) The structural properties of the oxygen conducting δ phase of Bi2O3. J Phys C Solid State Phys 16:L561–L566

    Article  CAS  Google Scholar 

  41. Yashima M, Ishimura D (2003) Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem Phys Lett 378:395–399

    Article  CAS  Google Scholar 

  42. Mohn CE, StØlen S, Stefan T, Norberg HS (2009) Oxide-ion disorder within the high temperature δ phase of Bi2O3. Phys Rev Lett 102:155502

    Article  Google Scholar 

  43. Iwahara H, Esaka T, Sato T, Takahashi T (1981) Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln=La-Yb). J Solid State Chem 39:173–180

    Article  CAS  Google Scholar 

  44. Datta RK, Meehan JP (1971) The system Bi2O3-R2O3 (R=Y, Gd). Z Anorg Allg Chem 383:328–337

    Article  CAS  Google Scholar 

  45. Takahashi T, Iwahara H (1978) Oxide ion conductors based on bismuth sesquioxide. Mater Res Bull 13:1447–1453

    Article  CAS  Google Scholar 

  46. Fung KZ, Virkar AV (1991) Phase-stability, phase-transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants. J Am Ceram Soc 74:1970–1980

    Article  CAS  Google Scholar 

  47. Fung KZ, Beak HD, Virkar AV (1992) Thermo-dynamic and kinetic considerations for Bi2O3-based electrolytes. Solid State Ionics 52:199–211

    Article  CAS  Google Scholar 

  48. Huang K, Feng M, Goodenough JB (1996) Bi2O3-Y2O3-CeO2 solid solution oxide-ion electrolyte. Solid State Ionics 89:17–24

    Article  CAS  Google Scholar 

  49. Verkerk MJ, Keizer K, Burggraaf AJ (1980) High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J Appl Electrochem 10:81–90

    Article  CAS  Google Scholar 

  50. Kruidhof H, Boumeester HJM, de Vries KJ, Gellings PJ, Burggraaf AJ (1992) Thermochemical stability and nonstoichiometry of erbia-stabilized bismuth oxide. Solid State Ionics 50:181–186

    Article  CAS  Google Scholar 

  51. Watanabe A (2005) Phase relations of Bi2O3-rich Bi2O3-Er2O3 system: the appearance of a new stable orthorhombic phase (Bi2O3)0.72(Er2O3)0.28 against the known oxide-ion conductive hexagonal phase. Solid State Ionics 176:2423–2428

    Article  CAS  Google Scholar 

  52. Watanabe A, Sekita M (2005) Stabilized δ-Bi2O3 phase in the system Bi2O3-Er2O3−WO3 and its oxide-ion conduction. Solid State Ionics 176:2429–2433

    Article  CAS  Google Scholar 

  53. Ritter C, Radaelli PG, Lees MR, Barratt J, Balakrishnan G, Paul DM (1996) A new monoclinic perovskite allotype in Pr0.6Sr0.4MnO3. J Solid State Chem 127:276–282

    Article  CAS  Google Scholar 

  54. Tofield BC, Scott WR (1974) Oxidative nonstoichiometry in perovskites, an experimental survey: the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J Solid State Chem 10:183–194

    Article  CAS  Google Scholar 

  55. Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) The defect chemistry of LaMnOδ : 2. Structural aspects of LaMnO3+δ . J Solid State Chem 110:100–105

    Article  Google Scholar 

  56. Hassel BAV, Kawada T, Sakai N, Yokokawa H, Doldya M (1993) Oxygen permeation modelling of perovskites. Solid State Ionics 66:295–305

    Article  Google Scholar 

  57. Fukunga O, Fujita T (1973) The relation between ionic radii and cell volumes in the perovskite compounds. J Solid State Chem 8:331–338

    Article  Google Scholar 

  58. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite-type oxide as a new oxide ion conductor. J Am Chem Soc 116:3801–3803

    Article  CAS  Google Scholar 

  59. Feng M, Goodenough JB (1994) A superior oxide-ion electrolyte. Euro J Solid State Inorg Chem 31:663–672

    CAS  Google Scholar 

  60. Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122:1–15

    Article  CAS  Google Scholar 

  61. Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93

    Article  CAS  Google Scholar 

  62. Pradyot D, Peter M, Fritz A (2007) Structural studies of Sr- and Mg-doped LaGaO3. J Alloy Compd 438:232–237

    Article  Google Scholar 

  63. Kajitani M, Matsuda M, Hoshikawa A, Harjo S, Kamiyama T, Ishigaki T, Izumi F, Miyake M (2007) Doping effect on crystal structure and conduction property of fast oxide ion conductor LaGaO3-based perovskite. J Phys Chem Solids 68:758–764

    Article  CAS  Google Scholar 

  64. Ishihara T, Akbay T, Furutani H, Takita Y (1998) Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics 113:585–591

    Article  Google Scholar 

  65. Trofimenko N, Ullmann H (1999) Transition metal doped lanthanum gallates. Solid State Ionics 118:215–227

    Article  CAS  Google Scholar 

  66. Yamaji K, Negishi H, Horita T, Sakai N, Yokokawa H (2000) Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics 135:389–396

    Article  CAS  Google Scholar 

  67. Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856–858

    Article  CAS  Google Scholar 

  68. Marrero-Lopez D, Canales-Vazquez J, Zhou WZ, Irvine JTS, Núñez P (2005) Structural studies on W6+ and Nd3+ substituted La2Mo2O9 materials. J Solid State Chem 179:278–288

    Article  Google Scholar 

  69. Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre PH (2001) Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, base on lanthanum molybdenumoxide La2Mo2O9. J Mater Chem 11:119–124

    Article  CAS  Google Scholar 

  70. Tsai DS, Hsieh MJ, Tseng JC, Lee HY (2004) Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9. J Eur Ceram Soc 25:481–487

    Article  Google Scholar 

  71. Jin TY, Rao MMV, Cheng CL, Tsai DS, Hung MH (2007) Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9. Solid State Ionics 178:367–374

    Article  CAS  Google Scholar 

  72. Lu T, Steele BCH (1986) Electrical conductivity of polycrystalline BiVO4 samples having the scheelite structure. Solid State Ionics 21:339–342

    Article  CAS  Google Scholar 

  73. Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G (1988) Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ionics 28:529–532

    Article  Google Scholar 

  74. Yan J, Greenblatt M (1995) Ionic conductivities of Bi4V2−x M x O11−x/2 (M=Ti, Zr, Sn, Pb). Solid State Ionics 81:225–233

    Article  CAS  Google Scholar 

  75. Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The bimevox series: a new family of high performance oxide ion conductors. Solid State Ionics 40–41:934–937

    Article  Google Scholar 

  76. Sansom JEH, Richings D, Slater PR (2001) A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics 139:205–210

    Article  CAS  Google Scholar 

  77. Palcut M, Knibbe R, Wiik K, Grande T (2011) Cation inter-diffusion between LaMnO3 and LaCoO3 materials. Solid State Ionics 202:6–13

    Article  CAS  Google Scholar 

  78. Kubicek M, Rupp GM, Huber S, Penn A, Opitz AK, Bernardi J, Stoger-Pollach M, Hutter H, Fleig J (2014) Cation diffusion in La0.6Sr0.4CoO3−δ below 800 °C and its relevance for Sr segregation. Phys Chem Chem Phys 16:2715–2726

    Article  CAS  Google Scholar 

  79. Harvey SP, Souza RAD, Martin M (2012) Diffusion of La and Mn in Ba0.5Sr0.5Co0.8Fe0.2O3-δ polycrystalline ceramics. Energ Environ Sci 5:5803–5813

    Article  CAS  Google Scholar 

  80. Čebašek N, Haugsrud R, Norby T (2013) Determination of inter-diffusion coefficients for the A- and B-site in the A2BO4+δ (A = La, Nd and B = Ni, Cu) system. Solid State Ionics 231:74–80

    Article  Google Scholar 

  81. Kawamura K, Saiki A, Maruyama T, Nagato K (1995) Diffusion coefficient of yttrium ion in YCrO3. J Electrochem Soc 142:3073–3077

    Article  CAS  Google Scholar 

  82. Akashi T, Nanko M, Maruyama T, Shiraishi Y, Tanabe J (1998) Solid-State reaction kinetics of LaCrO3 from the oxides and determination of La3+ diffusion coefficient. J Electrochem Soc 145:2090–2094

    Article  CAS  Google Scholar 

  83. Suzuki AM, Yasuda A, Ozawa K (2008) Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. Phys Chem Miner 35:433–445

    Article  CAS  Google Scholar 

  84. Eriksson A, Einarsrud MA, Grande T (2011) Materials science aspects relevant for high-temperature electrochemistry. In: Kharton VV (ed) Solid state electrochemistry II: electrodes interfaces and ceramic membranes. Wiley, Weinheim, pp 415–466

    Chapter  Google Scholar 

  85. Anderson LL, Armstrong PA, Broekhuis RR, Carolan MF, Chen J, Hutcheon MD, Lewinsohn CA, Miller CF, Repasky JM, Taylor DM, Woods CM (2016) Advances in ion transport membrane technology for oxygen and syngas production. Solid State Ionics 288:331–337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, X., Yang, W. (2017). Ionic Conductors and Aspects Related to High Temperature. In: Mixed Conducting Ceramic Membranes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53534-9_3

Download citation

Publish with us

Policies and ethics