Skip to main content

Defects and Diffusion

  • Chapter
  • First Online:
Mixed Conducting Ceramic Membranes

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Point defects are the main defect type concerned in the field of MIEC membranes, because they are closely related to the motion of oxygen vacancies and holes in crystalline solids. In the first part of this chapter, the concept of point defects is introduced briefly, and then, the knowledge about point defects in MIEC oxides, defect association, and defect equilibrium are introduced. Grain boundary is mentioned as an important two-dimensional defect because of its potential influences on the mechanical, electric, magnetic, catalytic, and thermal properties of materials. In the second part, the concept of diffusion, the diffusion mechanism, and diffusion paths of oxygen ions in perovskite- and fluorite-type ionic conductors are presented. There are several types of diffusion coefficients derived from different measuring methods, and the difference and relationships between these diffusion coefficients are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tilley RJD (2008) Defects in solids. Wiley, Hoboken

    Book  Google Scholar 

  2. Petrov AN, Cherepanov VA, Kononchuk OF, Gavrilova LY (1990) Oxygen nonstoichiometry of Lal-xSrxCoO3-δ (0 < x ≤ 0.6). J Solid State Chem 87:69–76

    Article  CAS  Google Scholar 

  3. Cherepanov VA, Gavrilova LY, Aksenova TV, Ananyev MV, Bucher E, Caraman G, Sitte W, Voronin VI (2007) Synthesis, structure and oxygen nonstoichiometry of La0.4Sr0.6Co1-yFeyO3-δ. Prog Solid State Chem 35:175–182

    Article  CAS  Google Scholar 

  4. van Doorn RHE, Burggraaf AJ (2000) Structural aspects of the ionic conductivity of La1-xSrx CoO3-δ. Solid State Ionics 128:65–78

    Article  Google Scholar 

  5. Ou DR, Mori T, Ye F, Kobayashi T, Zou J, Auchterlonie G, Drennan J (2006) Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl Phys Lett 89:171911-(1–3)

    Google Scholar 

  6. Matsui T, Inaba M, Mineshige A, Ogumi Z (2005) Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. Solid State Ionics 176:647–654

    Article  CAS  Google Scholar 

  7. Park JH, Blumenthal RN (1989) Electronic transport in 8 mole percent Y2O3-ZrO2. J Electrochem Soc 136:2867–2876

    Article  CAS  Google Scholar 

  8. Jang JH, Choi GM (2002) Partial electronic conductivity of Sr and Mg doped LaGaO3. Solid State Ionics 154–155:481–486

    Article  Google Scholar 

  9. Shimonosono T, Hirata Y, Ehira Y, Sameshima S, Horita T, Yokokawab H (2004) Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb-Wagner method. Solid State Ionics 174:27–33

    Article  CAS  Google Scholar 

  10. Yahiro H, Eguchi K, Arai H (1989) Electrical-properties and reducibilities of ceria rare earth oxide systems and their application to solid oxide fuel-cell. Solid State Ionics 36:71–75

    Article  CAS  Google Scholar 

  11. Steele BCH, Zheng K, Rudkin RA, Kiratzis N, Christitie M (1995) Properties and applications of Ce(Gd)O2-x electrolytes in the temperature range 500–700 °C. In: Dokiya M, Yamonoto O, Tagawa H, Singhal SC (eds) Proceedings of the fourth international symposium on solid oxide fuel cells (SOFC-IV), June 1995. The Electrochemical Society, New Jersey, pp 1028–1038

    Google Scholar 

  12. Matsui T, Kosaka T, Inaba M, Mineshige A, Ogumi Z (2005) Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes. Solid State Ionics 176:663–668

    Article  CAS  Google Scholar 

  13. Mizusaki J, Mima Y, Yamauchi S, Fueki K (1989) Nonstoichiometry of the perovskite-type oxides La1-xSrxCoO3-δ. J Solid State Chem 80:102–111

    Article  CAS  Google Scholar 

  14. Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P (1995) Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ionics 80:189–199

    Article  CAS  Google Scholar 

  15. Merkle R, Maier J (2008) How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew Chem Int Ed 47:3874–3894

    Article  CAS  Google Scholar 

  16. Shim JH, Park JS, Holme TP, Crabb K, Lee W, Kim YB, Tian X, Gür TM, Prinz FB (2012) Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. Acta Mater 60:1–7

    Article  CAS  Google Scholar 

  17. Guo X, Zhang ZL (2003) Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Mater 51:2539–2547

    Article  CAS  Google Scholar 

  18. Metlenko V, Ramadan AHH, Gunkel F, Du HC, Schraknepper H, Hoffmann-Eifert S, Dittmann R, Waserb R, De Souza RA (2014) Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? Nanoscale 6:12864–12876

    Article  CAS  Google Scholar 

  19. Royera S, Duprezb D, Kaliaguinea S (2005) Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3. J Catal 234:364–375

    Article  Google Scholar 

  20. Diethelm S, van Herle J, Sfeir J, Buffat P (2004) Influence of microstructure on oxygen transport in perovskite type membranes. Br Ceram Trans 103:147–152

    Article  CAS  Google Scholar 

  21. Yashima M (2008) Crystal structures, structural disorders and diffusion paths of ionic conductors from diffraction experiments. Solid State Ionics 179:797–803

    Article  CAS  Google Scholar 

  22. Yashima M, Kobayashi S, Yasui T (2007) Positional disorder and diffusion path of oxide ions in the yttria-doped ceria Ce0.93Y0.07O1.96. Faraday Discuss 134:369–376

    Article  CAS  Google Scholar 

  23. Nakayama M, Martin M (2009) First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys Chem Chem Phys 11:3241–3249

    Article  CAS  Google Scholar 

  24. Shimojo F, Okazaki H (1992) Molecular dynamics studies of yttria stabilized zirconia. II Mechanism of oxygen diffusion. J Phys Soc Jpn 61:4106–4118

    Article  CAS  Google Scholar 

  25. Khan MS, Islam MS, Bates DR (1998) Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor. J Phys Chem B 102:3099–3104

    Article  CAS  Google Scholar 

  26. Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93

    Article  CAS  Google Scholar 

  27. Kuwabara A, Tanaka I (2004) First principles calculation of defect formation energies in Sr- and Mg-doped LaGaO3. J Phys Chem B 108:9168–9172

    Article  CAS  Google Scholar 

  28. Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T (2008) Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J Am Chem Soc 130:2762–2763

    Article  CAS  Google Scholar 

  29. Bucher E, Egger A, Ried P, Sitte W, Holtappels P (2008) Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3 – δ. Solid State Ionics 179:1032–1035

    Article  CAS  Google Scholar 

  30. Zhu XF, Liu HY, Cong Y, Yang WS (2012) Permeation model and experimental investigation of mixed conducting membranes. AIChE J 58:1744–1754

    Article  CAS  Google Scholar 

  31. Park JS, Kim YB, An J, Prinz FB (2012) Oxygen diffusion across the grain boundary in bicrystal yttria stabilized zirconia. Solid State Commun 152:2169–2171

    Article  CAS  Google Scholar 

  32. Brossmann U, Würschum R, Södervall U, Schaefer HE (1999) Oxygen diffusion in ultrafine grained monoclinic ZrO2. J Appl Phys 85:7646–7654

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, X., Yang, W. (2017). Defects and Diffusion. In: Mixed Conducting Ceramic Membranes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53534-9_2

Download citation

Publish with us

Policies and ethics