Skip to main content

Manifold Learning Approach Toward Constructing State Representation for Robot Motion Generation

  • Chapter
  • First Online:
Book cover Transactions on Computational Collective Intelligence XXIV

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9770))

Abstract

This paper presents a bottom-up approach to building internal representation of an autonomous robot. The robot creates its state space for planning and generating actions adaptively based on collected information of image features without pre-programmed physical model of the world. For this purpose, image-feature-based state space construction method is proposed using manifold learning approach. The visual feature is extracted from sample images by SIFT (scale invariant feature transform). SOM (Self Organizing Map) is introduced to find appropriate labels of image features throughout images with different configurations of robot. The vector of visual feature points mapped to low dimensional space express relation between the robot and its environment with LLE (locally linear embedding). The proposed method was evaluated by experiment with a humanoid robot collision classification and motion generation in an obstacle avoidance task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldebaran Robotics. Technical Specifications Document (2009). http://www.aldebaran-robotics.com/

  2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  3. Minato, T., Thomas, D., Yoshikawa, Y., Ishiguro, H.: A model to explain the emergence of imitation development based on predictability preference. IEEE Trans. Autonomous Mental Develop. 4(1), 17–28 (2012)

    Article  Google Scholar 

  4. Theodorou, E., Buchli, J., Schaal, S.: A path integral approach. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2397–2403 (2010)

    Google Scholar 

  5. Sugimoto, N., Morimoto, J.: Application to humanoid robot motor learning in the real environment. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1311–1316 (2013)

    Google Scholar 

  6. Minato, T., Asada, M.: Towards selective attention: generating image features by learning a visuo-motor map. Robot. Auton. Syst. 45(3–4), 211–221 (2006)

    Google Scholar 

  7. Prankl, J., Zillich, M., Vincze, M.: 3d piecewise planar object model for robotics manipulation. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1784–1790 (2011)

    Google Scholar 

  8. Ke, Y., Sukthankar, R.: A more distinctive representation for local image descriptors. In: Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  9. Kobayashi, Y., Okamoto, T., Onishi, M.: Generation of obstacle avoidance based on image features and embodiment. Intl. J. Robot. Autom. 24(4), 364–376 (2012)

    Google Scholar 

  10. Somei, T., Kobayashi, Y., Shimizu, A., Kaneko, T.: Clustering of image features based on contact and occlusion among robot body and objects. In: Proceedings of the 2013 IEEE Workshop on Robot Vision (WoRV2013), pp. 203–208 (2013)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  12. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  13. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a survey. Connect. Sci. 15, 151–190 (2003)

    Article  Google Scholar 

  14. Morimoto, J., Nakanishi, J., Endo, G., Cheng, G., Atkeson, C.G., Zeglin, G.: Poincaré-map-based reinforcement learning for biped walking. In: Proceedings of IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  15. Oudeyer, P.Y., Kaplan, F., Hafner, V.: Intrinsic motivation systems for autonomous mental development. IEEE Trans. Evol. Comput. 11(2), 265–286 (2007)

    Article  Google Scholar 

  16. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Stoytchev, A.: Some basic principles of developmental robotics. IEEE Trans. Autonomous Mental Develop. 1(2), 122–130 (2009)

    Article  Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction (Adaptive Computation and Machine Learning). In: A Bradford Book (1998)

    Google Scholar 

  19. Kober, J., Bagnell, D., Peters, J.: Reinforcement learning in robotics: a survey. Intl. J. Robot. Res. 11, 1238–1274 (2013)

    Article  Google Scholar 

  20. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.: Autonomous mental development by robots and animals. Science 291, 599–600 (2001)

    Article  Google Scholar 

  21. Fitzpatrick, P., Metta, G., Natalc, L., Rao, S., Sandini, G.: Learning about objects through action - initial steps towards artificial cognition. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3140–3145 (2003)

    Google Scholar 

  22. Stoytchev, A.: Toward video-guided robot behaviors. In: Proceedings of the 7th International Conference on Epigenetic Robotics, pp. 165–172 (2007)

    Google Scholar 

  23. Kobayashi, Y., Hosoe, S.: Planning-space shift motion generation: variable-space motion planning toward flexible extension of body schema. J. Intell. Robot. Syst. 62(3), 467–500 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by Kayamori Foundation of Informational Science Advancement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kobayashi, Y., Matsui, R. (2016). Manifold Learning Approach Toward Constructing State Representation for Robot Motion Generation. In: Nguyen, N., Kowalczyk, R., Filipe, J. (eds) Transactions on Computational Collective Intelligence XXIV. Lecture Notes in Computer Science(), vol 9770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53525-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53525-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53524-0

  • Online ISBN: 978-3-662-53525-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics