Skip to main content

Polymer Nanocomposites for Shape-Memory Applications

  • Chapter
  • First Online:
Properties and Applications of Polymer Nanocomposites

Abstract

The dynamic response of the materials to the external stimuli makes it intelligent or smart, and the smart materials have promising applications in many areas. Shape-memory polymers (SMPs), a class of smart materials, exhibit a rapid change from a normal rigid state to a stretchy elastic state and then come back to the original state in the presence of external stimulus. SMPs have several advantages which include multiple sensitivity of the materials, highly flexibility in programming, various structural designs of materials, fine-tuning of the property by proper blending, and formation of composite. Still SMPs have many disadvantages, including poor mechanical properties, low shape fixity and poor shape recovery stress, and shape recovery ratio. Therefore, the development of shape-memory nanocomposites is a matter of concern to improve the shape-memory behavior, stiffness, etc. Various SMP nanocomposites have been developed by incorporation of carbon nanofiber (CNF), carbon nanotube (CNT), nanoclay, nanosilicon carbide, carbon black, and inorganic fillers into the polymer matrix. Incorporation of nanoparticles leads to the development of electrical-sensitive, light-sensitive, magnetic-sensitive, and water-/solvent-sensitive SMP nanocomposites with special features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, B.K., Lee, S.Y., Xu, M.: Polyurethane having shape memory effect. Polymer 37, 5781 (1996)

    Article  CAS  Google Scholar 

  2. Liang, C., Rogers, C.A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 8, 285 (1997)

    Article  Google Scholar 

  3. Haggenmueller, R., Gommans, H.H.A.G.R., Fischer, J.E., Winey, K.I.: Aligned singlewall carbon nanotubes composites by melt processing methods. Chem. Phys. Lett. 330, 219 (2000)

    Article  CAS  Google Scholar 

  4. Li, F., Qi, L., Yang, J., Xu, M., Luo, X., Ma, D.: Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J. Appl. Polym. Sci. 75, 68 (2000)

    Article  CAS  Google Scholar 

  5. Fu, B.X., Hsiao, B.S., Pagola, S., Stephens, P., White, H., Rafailovich, M.: Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polymer 42, 599 (2001)

    Article  CAS  Google Scholar 

  6. Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361 (2002)

    Article  CAS  Google Scholar 

  7. Maitland, D.J., Metzger, M.F., Schumann, D., Lee, A., Wilson, T.S.: Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1 (2002)

    Article  Google Scholar 

  8. Cho, J.W., Lee, S.H.: Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. Eur. Polym. J. 40, 1343 (2004)

    Article  CAS  Google Scholar 

  9. Yang, B., Huang, W.M., Li, C., Lee, C.M., Li, L.: On the effects of moisture in a polyurethane shape memory polymer. Smart Mater. Struct. 13, 191 (2004)

    Article  CAS  Google Scholar 

  10. Jung, Y.C., Sahoo, N.G., Cho, J.W.: Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers. Macromol. Rapid. Commun. 27, 126 (2006)

    Article  CAS  Google Scholar 

  11. Schmidt, A.M.: Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid. Commun. 27, 1168 (2006)

    Article  CAS  Google Scholar 

  12. Zheng, X., Zhou, S., Li, X., Weng, J.: Shape memory properties of poly(D,L-lactide)/ hydroxyapatite composites. Biomaterials 27, 4288 (2006)

    Article  CAS  Google Scholar 

  13. Cao, F., Jana, S.C.: Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48, 3790 (2007)

    Article  CAS  Google Scholar 

  14. Liu, C., Qin, H., Mather, P.T.: Progress in shape-memory polymers. J. Mater. Chem. 17, 1543 (2007)

    Article  CAS  Google Scholar 

  15. Mondal, S., Hu, J.L.: A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J. Appl. Polym. Sci. 103, 3370 (2007)

    Article  CAS  Google Scholar 

  16. Sahoo, N.G., Jung, Y.C., Yoo, H.J., Cho, J.W.: Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 67, 1920 (2007)

    Article  CAS  Google Scholar 

  17. Zhang, C.S., Ni, Q.Q., Fu, S.Y., Kurashiki, K.: Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos. Sci. Technol. 67, 2973 (2007)

    Article  CAS  Google Scholar 

  18. Cao, F., Jana, S.C., Gunes, I.S.: Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49, 2223 (2008)

    Article  Google Scholar 

  19. Park, J.S., Chung, Y.C., Lee, S.D., Cho, J.W., Chun, B.C.: Shape memory effects of polyurethane block copolymers cross-linked by celite. Fibers Polym. 9, 661 (2008)

    Article  CAS  Google Scholar 

  20. Ratna, D., Karger-Kocsis, J.: Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254 (2008)

    Article  CAS  Google Scholar 

  21. Meng, Q.H., Hu, J.L.: A review of shape memory polymer composites and blends. Appl. Sci. Manuf. 40, 1661 (2009)

    Article  Google Scholar 

  22. Huang, W.M., Yang, B., Zhao, Y., Ding, Z.: Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 20, 3367 (2010)

    Article  CAS  Google Scholar 

  23. Madbouly, S.A., Lendlein, A.: Shape-memory polymer composites. Adv. Polym. Sci. 226, 41 (2010)

    Article  CAS  Google Scholar 

  24. Xie, T.: Tunable polymer multi-shape memory effect. Nature 464, 267 (2010)

    Article  CAS  Google Scholar 

  25. Hu, J., Zhu, Y., Huang, H., Lu, J.: Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications: a review. Prog. Polym. Sci. 37, 1720 (2012)

    Article  CAS  Google Scholar 

  26. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577 (2012)

    Article  CAS  Google Scholar 

  27. Iqbal, D., Samiullah, H.M.: Photo responsive shape-memory and shape-changing lliquid crystal polymer networks: a review. Mater. Des. 6, 116 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuhin Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Chatterjee, T., Naskar, K. (2017). Polymer Nanocomposites for Shape-Memory Applications. In: Tripathy, D., Sahoo, B. (eds) Properties and Applications of Polymer Nanocomposites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53517-2_9

Download citation

Publish with us

Policies and ethics