Skip to main content

Polymer Nanocomposites for Automobile Engineering Applications

  • Chapter
  • First Online:
Properties and Applications of Polymer Nanocomposites

Abstract

This chapter provides an overview on the nanofillers such as nanosilica, CNT, CNF, and reinforced polymer nanocomposites for various automobile applications. Among all the polymer-based automotive components, tire is the most important one. A tire must deliver high traction on dry as well as wet roads, commonly called as wet and dry grip. This high traction force between tread and road is necessary for avoiding slippage while running on the road. Many leading tire manufacturers are now developing engineered composites to further extend the life of tire. This chapter explains the applications of polymer nanocomposites for automotive coating, highly scratch resistance clear coating, weather resistance automobile coatings, and for ultra-reflecting layer for automobile mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinker, C.J., Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic, San Diego (1990)

    Google Scholar 

  2. Messersmith, P.B., Giannelis, E.P.: J. Polym. Sci. 33, 1047 (1995)

    Article  CAS  Google Scholar 

  3. Okada, A., Usuki, A.: Mater. Sci. Eng. C3, 109 (1995)

    Article  CAS  Google Scholar 

  4. Gilman, J.W.: Appl. Clay Sci. 15, 31 (1999)

    Article  CAS  Google Scholar 

  5. Tibenham, P., Bulletin, T.: Developing polymer nanocomposites for automotive applications. Ford Motor Company (2001), USA

    Google Scholar 

  6. Schlapbach, L., Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414(6861), 353 (2001)

    Article  CAS  Google Scholar 

  7. Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies. Nature 414(6861), 345 (2001)

    Article  CAS  Google Scholar 

  8. Becker, O., Varley, R., Simon, G.: Polymer 43, 4365 (2002)

    Article  CAS  Google Scholar 

  9. Hernandez-Padron, G., Rojas, F., Garcia-Garduno, M., Canseco, M.A., Castano, V.M.: Development of hybrid materials consisting of SiO2 microparticles embedded in phenolic-formaldehydic resin polymer matrices. Mater. Sci. Eng. A 355, 338 (2003)

    Article  Google Scholar 

  10. Pluart, L., Duchet, J., Sautereau, H., Halley, P., Gerard, J.F.: Appl. Clay Sci. 25(3–4), 207 (2003)

    Google Scholar 

  11. Presting, H., König, U.: Future nanotechnology developments for automotive applications. Mater. Sci. Eng. C 23(6–8), 737 (2003)

    Article  Google Scholar 

  12. Bandyopadhyay, A., Bhowmick, A.K., De Sarkar, M.: J. Appl. Polym. Sci. 93, 2579 (2004)

    Article  CAS  Google Scholar 

  13. Bellayer, S., Bourbigot, S., Flambard, X., Rochery, M., Gilman, J.W., Devaux, E.: Proceedings of the 4th AUTEX conference, p. 3. ENSAIT, Roubaix (2004)

    Google Scholar 

  14. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245 (2004)

    Article  CAS  Google Scholar 

  15. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005)

    Article  CAS  Google Scholar 

  16. Bourbigot, S., Le Bras, M., Flambard, X., Rochery, M., Devaux, E., Lichtenhan, J.D.: Polyhedral oligomeric silsesquioxanes: applications to flame retardant textiles. In: Le Bras, M., Wilkie, C.A., Bourbigot, S., Duquesne, S., Jama, C. (eds.) Fire Retardancy of Polymers: New Applications of Mineral Fillers, p. 189. Royal Society of Chemistry, London (2005)

    Google Scholar 

  17. Chandra, A.K.: Tyre technology – recent advances and future trends. Paper presented at 170th Fall ACS, Rubber Division Meeting, Cincinnati, 10–12 Oct 2006

    Google Scholar 

  18. Strano, M.S.: Nat. Mat.S, 433 (2006)

    Google Scholar 

  19. Chan, C.C.: The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 704 (2007)

    Article  Google Scholar 

  20. Kim, W., Kang, B., Cho, S., Ha, C., Bae, J.-W.: Compos. Interfaces 14, 409 (2007)

    Article  CAS  Google Scholar 

  21. Park, N., Hong, S., Kim, G., Jhi, S.-H.: Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999 (2007)

    Article  CAS  Google Scholar 

  22. Sumankumar, V.V.S.: Effect of fillers on the tread compound. M. Tech. Thesis submitted to Rubber Technology Centre, IIT., Kharagpur (2007)

    Google Scholar 

  23. Amerio, E., Fabbri, P., Malucelli, G., Messori, M., Sangermano, M., Taurino, R.: Scratch resistance nano-silica reinforced acrylic coatings. Prog. Org. Coat. 62, 129 (2008)

    Article  CAS  Google Scholar 

  24. Chandra, A.K.: Recent advances and future trends in tyre technology. In: Bhowmick, A.K. (ed.) Current Topics in Elastomers Research, p. 919. CRC – Press/Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  25. Das, A.: Modified and unmodified multiwalled carbon nanotubes in high performance solution‐styrene‐butadiene and butadiene rubber blends. Polymer 49(24), 5276 (2008)

    Article  CAS  Google Scholar 

  26. Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E.: Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166 (2008)

    Article  CAS  Google Scholar 

  27. Maiti, M., Bhattacharya, M., Bhowmick, A.K.: Rubber Chem. Technol. 81, 384 (2008)

    Article  CAS  Google Scholar 

  28. Groenewolt, M.: Highly scratch resistant coatings for automotive applications. Prog. Org. Coat. 61, 106 (2008)

    Article  CAS  Google Scholar 

  29. Jeenish, A.G., Patel S.K., Tripathy, D.K., Chandra, A.K.: SBR-clay-carbon black nanocomposites for lower hysteresis, high abrasion tread. Paper presented at the international tire exhibition and conference, ITEC ‘08; Akron 2008

    Google Scholar 

  30. Lowry, M.S., Hubble, D.R., Wressell, A.L., Vratsanos, M.S., Pepe, F.R., Hegedus, C.R.: Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation. J. Coat. Technol. Res. 5(2), 233 (2008)

    Article  CAS  Google Scholar 

  31. Wang, X, Jia, D., Chen, M.: Structure and properties of epoxidised natural rubber/organoclay nanocomposite. Paper presented in 2nd international nano-electronics conference (IEEE), Shanghai, 24–27 Mar 2008

    Google Scholar 

  32. Werner, M., Kohly, W., Simic, M.: Nano technologies in automobiles. In: Sebasian Hummel (eds.), H A Hessen Agentur GmbH Abraham-Lincoln-Strasse, pp. 38–42, D-65189 Wiesbaden (2008), Hanser

    Google Scholar 

  33. Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760 (2009)

    Article  CAS  Google Scholar 

  34. Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., Nerskov, J.K.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552 (2009)

    Article  CAS  Google Scholar 

  35. Ramezanzadeh, B., Mohseni, M., Yari, H., Sabbaghian, S.: An evaluation of an automotive clear coat performance exposed to bird droppings under different testing approaches. Prog. Org. Coat. 66, 149 (2009)

    Article  CAS  Google Scholar 

  36. Serrano, E., Rus, G., Garcea-Martenez, J.: Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 13(9), 2373 (2009)

    Article  CAS  Google Scholar 

  37. Burress, J.W., Gadipelli, S., Ford, J., Simmons, J.M., Zhou, W., Yildirim, T.: Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 49(47), 8902 (2010)

    Article  CAS  Google Scholar 

  38. Nah, C., Abdul Kadir, M.: Barrier properties of rubber nanocomposite. In: Thomas, S., Stephen, R. (eds.) Rubber Nanocomposites: Preparation, Properties and Applications, p. 499. Wiley, Singapore (2010)

    Google Scholar 

  39. Kiliaris, P., Papaspyrides, C.D.: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 35, 902 (2010)

    Article  CAS  Google Scholar 

  40. Liu, R., Wu, D., Feng, X., Müllen, K.: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 49(14), 2565 (2010)

    Article  CAS  Google Scholar 

  41. Qu, L., Liu, Y., Baek, J.-B., Dai, L.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321 (2010)

    Article  CAS  Google Scholar 

  42. Ramezanzadeh, B., Mohseni, M., Yari, H., Sabbaghian, S.: A study of thermal mechanical properties of an automotive coating exposed to natural and simulated bird droppings. J. Ther. Anal. Calori. 102, 13 (2010)

    Article  CAS  Google Scholar 

  43. Sangermano, M., Messori, M.: Scratch resistance enhancement of polymer coatings. Macromol. Mater. Eng. 295, 603 (2010)

    Article  CAS  Google Scholar 

  44. Tahmassebi, N., Moradian, S., Ramezanzadeh, B., Khosravi, A., Behdad, S.: Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clear coat. Tribol. Int. 43, 685 (2010)

    Article  CAS  Google Scholar 

  45. Tollefson, J.: Hydrogen: fuel of the future? Nature 464, 1262 (2010)

    Article  CAS  Google Scholar 

  46. Wallner, E., Myers, B., Sarma, D.H.R. Parker, R.: SAE Int. 2010–01-1149, 48 (2010)

    Google Scholar 

  47. Zhou, X., et al.: New fabrication and mechanical properties of styrene-butadiene-rubber/carbon nanotubes nanocomposite. J. Mater. Sci Technol. 26(12), 1127 (2010)

    Article  CAS  Google Scholar 

  48. Bautista, Y., Gómez, M.P., Ribes, C., Sanz, V.: Correlation between the wear resistance and the scratch resistance for nanocomposite coatings. Prog. Org. Coat. 70(4), 178 (2011)

    Article  CAS  Google Scholar 

  49. Cataldo, F.: Fill the bill. Tire Technol. Int. 58 (2011)

    Google Scholar 

  50. Jeenish, A.G., Patel, S.K., Chandra, A.K., Tripathy, D.K.: J. Polym. Res. 18, 1625 (2011)

    Article  Google Scholar 

  51. Li, Y., Zhao, Y., Cheng, H., Hu, Y., Shi, G., Dai, L., Qu, L.: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134(1), 15 (2011)

    Article  Google Scholar 

  52. Mirabedini, S.M., Sabzi, M., Zohuriaan-Mehr, J., Atai, M., Behzadnasab, M.: Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Appl. Surf. Sci. 257(2011), 4196 (2011)

    Article  CAS  Google Scholar 

  53. Ramezanzadeh, B., Moradian, S., Tahmasebi, N., Khosravi, A.: Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clear coat. Prog. Org. Coat. 72(4), 621 (2011)

    Article  CAS  Google Scholar 

  54. Rashvand, M., Ranjbar, Z., Rastegar, S.: Nano zinc oxide as a UV-stabilizer for aromatic polyurethane coatings. Prog. Org. Coat 71, 362 (2011)

    Article  CAS  Google Scholar 

  55. Subrahmanyam, K.S., Kumar, P., Maitra, U., Govindaraj, A., Hembram, K.P.S.S., Waghmare, U.V., Rao, C.N.R.: Chemical storage of hydrogen in few-layer graphene. Proc. Natl. Acad. Sci. 108(7), 2674 (2011)

    Article  CAS  Google Scholar 

  56. Wang, S., Yu, D., Dai, L., Chang, D.W., Baek, J.-B.: Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5(8), 6202 (2011)

    Article  CAS  Google Scholar 

  57. Wang, X., Ding, B., Yu, J., Wang, M.: Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6, 510 (2011)

    Article  CAS  Google Scholar 

  58. Yahyaei, H., Mohseni, M., Bastani, S.: Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol–gel based UV curable nanocomposite films on polycarbonate. J. Sol-Gel Sci. Technol. 59, 95 (2011)

    Article  CAS  Google Scholar 

  59. Chen, P., Xiao, T.-Y., Li, H.-H., Yang, J.-J., Wang, Z., Yao, H.-B., Yu, S.-H.: Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano 6(1), 712 (2012)

    Article  CAS  Google Scholar 

  60. Ramezanzadeh, B., Mohseni, M., Mohammad Rabea, A., Yari, H.: Attributing the resistance against simulated tree gum of an acrylic/melamine film loaded with an active silicone additive to its surface free energy. Int. J. Adhes. Adhes. 31(7), 775 (2012)

    Article  Google Scholar 

  61. Zhang, M., Dai, L.: Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy 1, 514 (2012), advance online publication

    Article  CAS  Google Scholar 

  62. Chandra, A.K., Visakh, P.M., et al. (eds.): Advances in Elastomers II, Advanced Structured Materials, vol. 12. Springer, Berlin/Heidelberg (2013). doi:10.1007/978-3-642-20928-4_6

    Google Scholar 

  63. Wang, C., Wu, H., Chen, Z., McDowell, M.T., Cui, Y., Bao, Z.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. (2013). doi:10.1038/nchem.1802

    Google Scholar 

  64. Liu, D.-s., Jian-xun, Z., Xiang-yang, L., Qing-jun, G., Jie, J.: Application of Active Nano-Calcium Carbonate in Tire. Internal literature of Qingdao Double Star Tire Industry, Jiaonan (2007). 266400

    Google Scholar 

  65. Mohseni, M., Ramezanzadeh, B., Yari, H., Gudarzi, M.M.: The role of nanotechnology in automotive industry. Amirkabir University of Technology, Iran. doi:10.5772/49939. www.azonano.com/Details.asp’. (Articale ID = 1351)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Kumar Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Chandra, A.K., Kumar, N.R. (2017). Polymer Nanocomposites for Automobile Engineering Applications. In: Tripathy, D., Sahoo, B. (eds) Properties and Applications of Polymer Nanocomposites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53517-2_7

Download citation

Publish with us

Policies and ethics