Skip to main content

Disinfection of Waters/Wastewaters by Solar Photocatalysis

  • Chapter
  • First Online:
Advances in Photocatalytic Disinfection

Abstract

A light source and a semiconducting material comprise a powerful duo that may offer several photocatalytic applications for environmental remediation; in recent years, photocatalytic disinfection based on sunlight has gained considerable attention as an efficient and sustainable technology to control the population of various microorganisms in several aqueous matrices. This chapter highlights recent developments in the field both from an engineering and a microbiological point of view. Advances in photocatalytic materials include the modification of all-time classic titania to perform better in the visible part of the electromagnetic spectrum, as well as synthesize novel catalysts such as silver phosphate or robust Fenton-like materials. Measuring disinfection efficiency correctly is critical in designing proper treatment systems. Disinfection kinetics are affected by several factors including reactor configuration, the water matrix, possible synergy with other oxidation processes, the selection of the test microorganism, and, most importantly, the way the population of microorganisms is measured; the latter is crucial since disinfection efficiency can easily be overestimated. All these, alongside the mechanisms of microbial structure destruction upon photocatalytic illumination and the perspectives and constraints of process scale-up, are dealt with in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pepper IL, Gerba CP, Gentry TJ (2015) Environmental microbiology, 3rd edn. Academic, San Diego

    Google Scholar 

  2. Fisher MB, Keane DA, Fernández-Ibáñez P, Colreavy J, Hinder SJ, McGuigan KG, Pillai SC (2013) Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Appl Catal B Environ 130–131:8–13

    Article  Google Scholar 

  3. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  4. Koivunen J, Heinonen-Tanski H (2005) Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res 39:1519–1526

    Article  CAS  Google Scholar 

  5. Hu L, Page MA, Sigstam T, Kohn T, Mariñas BJ, Strathmann TJ (2012) Inactivation of bacteriophage MS2 with potassium ferrate(VI). Environ Sci Technol 46:12079–12087

    Article  CAS  Google Scholar 

  6. Pablos C, Marugán J, van Grieken R, Serrano E (2013) Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Res 47:1237–1245

    Article  CAS  Google Scholar 

  7. Dunlop PSM, McMurray TA, Hamilton JWJ, Byrne JA (2008) Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. J Photochem Photobiol A Chem 196:113–119

    Article  CAS  Google Scholar 

  8. Gerrity D, Ryu H, Crittenden J, Abbaszadegan M (2008) Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1261–1270

    Article  CAS  Google Scholar 

  9. Vijay M, Ramachandran K, Ananthapadmanabhan PV, Nalini B, Pillai BC, Bondioli F, Manivannan A, Narendhirakannan RT (2013) Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Curr Appl Phys 13:510–516

    Article  Google Scholar 

  10. Robertson PKJ, Robertson JMC, Bahnemann DW (2012) Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater 211–212:161–171

    Article  Google Scholar 

  11. Malato S, Maldonado MI, Fernández-Ibáñez P, Oller I, Polo I, Sánchez-Moreno R (2016) Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the Plataforma Solar de Almeria. Mater Sci Semicond Process 42:15–23

    Article  CAS  Google Scholar 

  12. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  13. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  14. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  15. Venieri D, Fraggedaki A, Kostadima M, Chatzisymeon E, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D (2014) Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: photocatalyst characterization and disinfection performance. Appl Catal B Environ 154–155:93–101

    Article  Google Scholar 

  16. Venieri D, Gounaki I, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D (2014) Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Appl Catal B Environ 178:54–64

    Article  Google Scholar 

  17. Venieri D, Gounaki I, Bikouvaraki M, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D (2016) Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. J Environ Manage 1–8

    Google Scholar 

  18. Byrne JA, Fernandez-Ibáñez PA, Dunlop PSM, Alrousan DMA, Hamilton JWJ (2011) Photocatalytic enhancement for solar disinfection of water: a review. Int J Photoenergy. doi:10.1155/2011/798051

    Google Scholar 

  19. Ede S, Hafner L, Dunlop P, Byrne J, Will G (2012) Photocatalytic disinfection of bacterial pollutants using suspended and immobilized TiO2 powders. Photochem Photobiol 88:728–735

    Article  CAS  Google Scholar 

  20. Venieri D, Chatzisymeon E, Sofianos SS, Politi E, Xekoukoulotakis NP, Katsaounis A, Mantzavinos D (2012) Removal of faecal indicator pathogens from waters and wastewaters by photoelectrocatalytic oxidation on TiO2/Ti films under simulated solar radiation. Environ Sci Pollut Res 19:3782–3790

    Article  CAS  Google Scholar 

  21. Bogdan J, Zarzyńska J, Pławińska-Czarnak J (2015) Comparison of infectious agents susceptibility to photocatalytic effects of nanosized titanium and zinc oxides: a practical approach. Nanoscale Res Lett 10:309

    Article  Google Scholar 

  22. Chandran P, Kumari P, Sudheer Khan S (2014) Photocatalytic activation of CdS NPs under visible light for environmental cleanup and disinfection. Sol Energy 105:542–547

    Article  CAS  Google Scholar 

  23. Yi Z, Ye J, Kikugawa N et al (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9:559–564

    Article  CAS  Google Scholar 

  24. Eswar NK, Ramamurthy PC, Madras G (2015) Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation. Photochem Photobiol Sci 14:1227–1237

    Article  CAS  Google Scholar 

  25. Xu JW, Gao ZD, Han K, Liu Y, Song YY (2014) Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. Appl Mater Interfaces 6:15122–15131

    CAS  Google Scholar 

  26. Yang X, Qin J, Jiang Y, Li R, Li Y, Tang H (2014) Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Adv 4:18627

    Article  CAS  Google Scholar 

  27. Barreca S, Velez Colmenares JJ, Pace A, Orecchio S, Pulgarin C (2015) Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. J Environ Chem Eng 3:317–324

    Article  CAS  Google Scholar 

  28. Nieto-Juarez JI, Kohn T (2013) Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Photochem Photobiol Sci 12:1596–1605

    Article  CAS  Google Scholar 

  29. Ruales-Lonfat C, Barona JF, Sienkiewicz A, Bensimon M, Vélez-Colmenares J, Benítez N, Pulgarín C (2015) Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH. Appl Catal B Environ 166–167:497–508

    Article  Google Scholar 

  30. Pigeot-Rémy S, Lazzaroni JC, Simonet F, Petinga P, Vallet C, Petit P, Vialle PJ, Guillard C (2014) Survival of bioaerosols in HVAC system photocatalytic filters. Appl Catal B Environ 144:654–664

    Article  Google Scholar 

  31. Chuaybamroong P, Thunyasirinon C, Supothina S, Sribenjalux P, Wu CY (2011) Performance of photocatalytic lamps on reduction of culturable airborne microorganism concentration. Chemosphere 83:730–735

    Article  CAS  Google Scholar 

  32. Zhao Y, Aarnink AJA, Xin H (2014) Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber. J Air Waste Manage Assoc 64:38–46

    Article  CAS  Google Scholar 

  33. Karunakaran C, Vijayabalan A, Manikandan G, Gomathisankar P (2011) Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catal Commun 12:826–829

    Article  CAS  Google Scholar 

  34. Lu Z-X, Zhou L, Zhang Z-L, Shi W-L, Xie Z-X, Xie H-Y, Pang D-W, Shen P (2003) Cell damage induced by photocatalysis of TiO2 thin films. Langmuir 19:8765–8768

    Article  CAS  Google Scholar 

  35. Vohra A, Goswami DY, Deshpande DA, Block SS (2005) Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J Ind Microbiol Biotechnol 32:364–370

    Article  CAS  Google Scholar 

  36. Yoo S, Ghafoor K, Kim S, Sun YW, Kim JU, Yang K, Lee DU, Shahbaz HM, Park J (2015) Inactivation of pathogenic bacteria inoculated onto a BactoTM agar model surface using TiO2-UVC photocatalysis, UVC and chlorine treatments. J Appl Microbiol 119:688–696

    Article  CAS  Google Scholar 

  37. Markowska-Szczupak A, Ulfig K, Morawski AW (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169:249–257

    Article  CAS  Google Scholar 

  38. Yadav HM, Otari SV, Bohara RA, Mali SS, Pawar SH, Delekar SD (2014) Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. J Photochem Photobiol A Chem 294:130–136

    Article  CAS  Google Scholar 

  39. Xiao G, Zhang X, Zhang W, Zhang S, Su H, Tan T (2015) Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organic-inorganic composites for water disinfection. Appl Catal B Environ 170–171:255–262

    Article  Google Scholar 

  40. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B Environ 98:27–38

    Article  CAS  Google Scholar 

  41. McGuigan KG, Méndez-Hermida F, Castro-Hermida JA et al (2006) Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101:453–463

    Article  CAS  Google Scholar 

  42. Jebri S, Hmaied F, Jofre J, MariemYahya MJ, Barkallah I, Hamdi M (2013) Effect of gamma irradiation on bacteriophages used as viral indicators. Water Res 47:3673–3678

    Article  CAS  Google Scholar 

  43. Ditta IB, Steele A, Liptrot C, Tobin J, Tyler H, Yates HM, Sheel DW, Foster HA (2008) Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 79:127–133

    Article  CAS  Google Scholar 

  44. Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275

    Article  CAS  Google Scholar 

  45. Misstear DB, Gill LW (2012) The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis. J Photochem Photobiol B Biol 107:1–8

    Article  CAS  Google Scholar 

  46. Cho M, Cates EL, Kim JH (2011) Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res 45:2104–2110

    Article  CAS  Google Scholar 

  47. Kim JY, Lee C, Sedlak DL, Yoon J, Nelson KL (2010) Inactivation of MS2 coliphage by Fenton’s reagent. Water Res 44:2647–2653

    Article  CAS  Google Scholar 

  48. Wong MS, Chu WC, Sun DS et al (2006) Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72:6111–6116

    Article  CAS  Google Scholar 

  49. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  Google Scholar 

  50. Pigeot-Rémy S, Simonet F, Errazuriz-Cerda E, Lazzaroni JC, Atlan D, Guillard C (2011) Photocatalysis and disinfection of water: identification of potential bacterial targets. Appl Catal B Environ 104:390–398

    Article  Google Scholar 

  51. Gogniat G, Dukan S (2007) TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73:7740–7743

    Article  CAS  Google Scholar 

  52. Süß J, Volz S, Obst U, Schwartz T (2009) Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection. Water Res 43:3705–3716

    Article  Google Scholar 

  53. Chatzisymeon E, Droumpali A, Mantzavinos D, Venieri D (2011) Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method. Photochem Photobiol Sci 10:389–395

    Article  CAS  Google Scholar 

  54. Rochelle PA, Upton SJ, Montelone BA, Woods K (2005) The response of Cryptosporidium parvum to UV light. Trends Parasitol 21:81–87

    Article  CAS  Google Scholar 

  55. Marugán J, van Grieken R, Sordo C, Cruz C (2008) Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Appl Catal B Environ 82:27–36

    Article  Google Scholar 

  56. Rennecker JL, Mariñas BJ, Owens JH, Rice EW (1999) Inactivation of Cryptosporidium parvum oocysts with ozone. Water Res 33:2481–2488

    Article  CAS  Google Scholar 

  57. Venieri D, Chatzisymeon E, Gonzalo MS, Rosal R, Mantzavinos D (2011) Inactivation of Enterococcus faecalis by TiO2-mediated UV and solar irradiation in water and wastewater: culture techniques never say the whole truth. Photochem Photobiol Sci 10:1744

    Article  CAS  Google Scholar 

  58. Venieri D, Chatzisymeon E, Politi E, Sofianos SS, Katsaounis A, Mantzavinos D (2013) Photoelectrocatalytic disinfection of water and wastewater: performance evaluation by qPCR and culture techniques. J Water Health 11:21–29

    Article  CAS  Google Scholar 

  59. Zhang S, Ye C, Lin H, Lv L, Yu X (2015) UV Disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environ Sci Technol 49:1721–1728

    Article  CAS  Google Scholar 

  60. Kacem M, Bru-Adan V, Goetz V, Steyer JP, Plantard G, Sacco D, Wery N (2016) Inactivation of Escherichia coli by TiO2-mediated photocatalysis evaluated by a culture method and viability-qPCR. J Photochem Photobiol A Chem. doi:10.1016/j.jphotochem.2015.11.020

    Google Scholar 

  61. Pratap Reddy M, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386

    Article  CAS  Google Scholar 

  62. Rizzo L, Della Sala A, Fiorentino A, Li Puma G (2014) Disinfection of urban wastewater by solar driven and UV lamp – TiO2 photocatalysis: effect on a multi drug resistant Escherichia coli strain. Water Res 53:145–152

    Article  CAS  Google Scholar 

  63. Veréb G, Manczinger L, Bozsó G, Sienkiewicz A, Forró L, Mogyorósi K, Hernádi K, Dombi A (2013) Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl Catal B Environ 129:566–574

    Article  Google Scholar 

  64. Nadtochenko VA, Rincon AG, Stanca SE, Kiwi J (2005) Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy. J Photochem Photobiol A Chem 169:131–137

    Article  CAS  Google Scholar 

  65. Helali S, Polo-López MI, Fernández-Ibáñez P, Ohtani B, Amano F, Malato S, Guillard C (2013) Solar photocatalysis: a green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. J Photochem Photobiol A Chem 276:31–40

    Article  CAS  Google Scholar 

  66. Rames E, Roiko A, Stratton H, Macdonald J (2016) Technical aspects of using human adenovirus as a viral water quality indicator. Water Res 96:308–326

    Article  CAS  Google Scholar 

  67. Zieliñska A, Kowalska E, Sobczak JW, Łącka I, Gazda M, Ohtani B, Hupka J, Zaleska A (2010) Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Sep Purif Technol 72:309–318

    Article  Google Scholar 

  68. Cheng CL, Sun DS, Chu WC et al (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16:7

    Article  Google Scholar 

  69. Swetha S, Santhosh SM, Balakrishna RG (2010) Enhanced bactericidal activity of modified titania in sunlight against Pseudomonas aeruginosa, a water-borne pathogen. Photochem Photobiol 86:1127–1134

    Article  CAS  Google Scholar 

  70. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14

    Article  CAS  Google Scholar 

  71. Pecson BM, Decrey L, Kohn T (2012) Photoinactivation of virus on iron-oxide coated sand: Enhancing inactivation in sunlit waters. Water Res 46:1763–1770

    Article  CAS  Google Scholar 

  72. Zuo X, Hu J, Chen M (2015) The role and fate of inorganic nitrogen species during UVA/TiO2 disinfection. Water Res 80:12–19

    Article  CAS  Google Scholar 

  73. Marugán J, van Grieken R, Pablos C (2010) Kinetics and influence of water composition on photocatalytic disinfection and photocatalytic oxidation of pollutants. Environ Technol 31:1435–1440

    Article  Google Scholar 

  74. Philippe KK, Timmers R, van Grieken R, Marugan J (2016) Photocatalytic disinfection and removal of emerging pollutants from effluents of biological wastewater treatments, using a newly developed large-scale solar simulator. Ind Eng Chem Res 55:2952–2958

    Article  CAS  Google Scholar 

  75. Barwal A, Chaudhary R (2016) Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process. J Environ Manag 177:271–277

    Article  CAS  Google Scholar 

  76. Carra I, Santos-Juanes L, Acién Fernández FG, Malato S, Sánchez Pérez JA (2014) New approach to solar photo-Fenton operation. Raceway ponds as tertiary treatment technology. J Hazard Mater 279:322–329

    Article  CAS  Google Scholar 

  77. Frontistis Z, Xekoukoulotakis NP, Hapeshi E, Venieri D, Fatta-Kassinos D, Mantzavinos D (2011) Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chem Eng J 178:175–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionissios Mantzavinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Venieri, D., Mantzavinos, D. (2017). Disinfection of Waters/Wastewaters by Solar Photocatalysis. In: An, T., Zhao, H., Wong, P. (eds) Advances in Photocatalytic Disinfection. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53496-0_8

Download citation

Publish with us

Policies and ethics