Skip to main content

Photocatalytic Disinfection by Metal-Free Materials

  • Chapter
  • First Online:
Advances in Photocatalytic Disinfection

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Recent years have seen a surge of interest in the application of solar energy for water disinfection by using semiconductor photocatalysts. Seeking visible-light-driven (VLD) photocatalysts for efficient solar energy conversion for bacterial disinfection has become an intensifying endeavor in this field. While overwhelming attention has been given to metal-based semiconductors, researchers have turned their focus on metal-free materials for photocatalysis in recent years. Metal-free photocatalysts have unique advantages of earth abundance, low cost, simple structure, simple synthesis, and environmental friendliness. This chapter presents an overview of current research activities that center on the preparation, characterization, and application of metal-free photocatalysts for water disinfection under visible-light irradiation. It is organized into three major parts, according to the classification of the metal-free photocatalysts. One is graphitic carbon nitride (g-C3N4)-based photocatalysts. The other is graphene-based photocatalysts, and the third is elemental photocatalysts that are made of only one single element. The material preparation and modification, photocatalytic mechanism, and bacterial disinfection mechanism are also reviewed in detail. Finally, it is concluded with a discussion about research opportunities and challenges facing the development of metal-free photocatalysts for bacterial disinfection using solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nation, The Millennium Development Goals Report 2012, ISBN 978-92-1-101258-3, (2012)

    Google Scholar 

  2. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  3. Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P (2000) Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57:73–85

    Article  CAS  Google Scholar 

  4. Sichel C, Blanco J, Malato S, Fernández-Ibáñez P (2007) Effects of experimental condition on E. coli survival during solar photocatalytic water disinfection. J Photochem Photobiol A Chem 189:239–246

    Article  CAS  Google Scholar 

  5. Kühn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag HG, Erdinger L (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77

    Article  Google Scholar 

  6. Bard AJ (1980) Photoelectrochemistry. Science 207:139–144

    Article  CAS  Google Scholar 

  7. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  8. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  9. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    Article  CAS  Google Scholar 

  10. Dunlop PSM, Byrne JA, Manga N, Eggins BR (2002) The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol A Chem 148:355–363

    Google Scholar 

  11. Dunlop PSM, Sheeran CP, Byrne JA, McMahon MAS, Boyle MA, McGuigan KG (2010) Inactivation of clinically relevant pathogens by photocatalytic coatings. J Photochem Photobiol A Chem 216:303–310

    Google Scholar 

  12. Dunlop PSM, McMurray TA, Hamilton JWJ, Byrne JA (2008) Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. J Photochem Photobiol A Chem 196:113–119

    Google Scholar 

  13. Watts RJ, Kong S, Orr MP, Miller GC, Henry BE (1995) Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29:95–100

    Article  CAS  Google Scholar 

  14. Sunnotel O, Verdoold R, Dunlop PSM, Snelling WJ, Lowery CJ, Dooley JSG, Moore JE, Byrne JA (2010) Photocatalytic inactivation of Cryptosporidium parvumon nanostructured titanium dioxide films. J Water Health 8:83–91

    Google Scholar 

  15. Sichel C, de Cara M, Tello J, Blanco J, Fernández-Ibánez P (2007) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B Environ 74:152–160

    Google Scholar 

  16. Linkous CA, Carter GJ, Locuson DB, Ouellette AJ, Slattery DK, Smith LA (2000) Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Environ Sci Technol 34:4754–4758

    Article  CAS  Google Scholar 

  17. Scuderi V, Impellizzeri G, Zimbone M, Sanz R, Di Mauro A, Buccheri MA, Miritello M, Terrasi A, Rappazzo G, Nicotra G (2016) Rapid synthesis of photoactive hydrogenated TiO2 nanoplumes. Appl Catal B Environ 183:328–334

    Article  CAS  Google Scholar 

  18. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28:1–50

    Article  CAS  Google Scholar 

  19. Raju K, Navadeepthy D, Kaliyan H, Tata NR, Srinivasan A (2015) Visible-light-induced photocatalytic disinfection of E. coli pathogens with Fe3+-grafted ZnO nanoparticles. Energy Environ Focus 4:232–238

    Article  Google Scholar 

  20. Sanchez L, Guz L, Garcia P, Ponce S, Goyanes S, Marchi MC, Candal R, Rodriguez J (2015) Synthesis and characterization of ZnO nanorod films on PET for photocatalytic disinfection of water. J Adv Oxid Technol 18:246–252

    CAS  Google Scholar 

  21. Liu SW, Huang GC, Yu JG, Ng TW, Yip HY, Wong PK (2014) Porous fluorinated SnO2 hollow nanospheres: transformative self-assembly and photocatalytic inactivation of bacteria. ACS Appl Mater Interf 6:2407–2414

    Google Scholar 

  22. Basnet P, Larsen GK, Jadeja RP, Hung YC, Zhao YP (2013) alpha-Fe2O3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications. ACS Appl Mater Interf 5:2085–2095

    Google Scholar 

  23. Wang WJ, Yu Y, An TC, Li GY, Yip HY, Yu JC, Wong PK (2012) Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ Sci Technol 46:4599–4606

    Article  CAS  Google Scholar 

  24. Xiong LB, Ng TW, Yu Y, Xia DH, Yip HY, Li GY, An TC, Zhao HJ, Wong PK (2015) N-type Cu2O film for photocatalytic and photoelectrocatalytic processes: its stability and inactivation of E. coli. Electrochim Acta 153:583–593

    Article  CAS  Google Scholar 

  25. Wang WJ, Ng TW, Ho WK, Huang JH, Liang SJ, An TC, Li GY, Yu JC, Wong PK (2013) CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: synthesis, characterizations and photocatalytic inactivation mechanisms. Appl Catal B Environ 129:482–490

    Article  CAS  Google Scholar 

  26. Liu L, Liu JC, Sun DD (2012) Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Catal Sci Technol 2:2525–2532

    Article  CAS  Google Scholar 

  27. Liang JL, Deng J, Li M, Tong MP (2016) Bactericidal activity and mechanism of AgI/AgBr/BiOBr0.75I0.25 under visible light irradiation. Colloids Surf B 138:102–109

    Article  CAS  Google Scholar 

  28. Ng TW, Zhang LS, Liu JS, Huang GC, Wang W, Wong PK (2016) Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr. Water Res 90:111–118

    Article  CAS  Google Scholar 

  29. Ananpattarachai J, Boonto Y, Kajitvichyanukul P (2016) Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environ Sci Pollut Res 23:4111–4119

    Google Scholar 

  30. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2011) Preparation and characterization of ZnO-TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater Res Bull 46:1586–1592

    Article  CAS  Google Scholar 

  31. Liu L, Liu ZY, Bai HW, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46:1101–1112

    Article  CAS  Google Scholar 

  32. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  33. Chang F, Xie YC, Li CL, Chen J, Luo JR, Hu XF, Shen JW (2012) A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Appl Surf Sci 280:967–974

    Article  Google Scholar 

  34. Wang Y, Wang XC, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89

    Article  CAS  Google Scholar 

  35. Cao SW, Yu JG (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107

    Article  CAS  Google Scholar 

  36. Gong YG, Li MM, Wang Y (2015) Carbon nitride in energy conversion and storage: recent advances and future prospects. ChemSusChem 8:931–946

    Article  CAS  Google Scholar 

  37. Cao SW, Low JX, Yu JG, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 1:2150–2176

    Article  Google Scholar 

  38. Wang K, Li Q, Liu BS, Cheng B, Ho WK, Yu JG (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B Environ 176:44–52

    Google Scholar 

  39. Lei JY, Chen Y, Shen F, Wang LZ, Liu YD, Zhang JL (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Alloy Comp 631:328–334

    Article  CAS  Google Scholar 

  40. Shi L, Liang L, Wang FX, Liu MS, Chen KL, Sun KN, Zhang NQ, Sun JM (2015) Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity. ACS Sustain Chem Eng 3:3412–3419

    Article  CAS  Google Scholar 

  41. Chai B, Peng TY, Mao J, Li K, Zan L (2012) Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752

    Article  CAS  Google Scholar 

  42. Dong F, Zhao ZW, Xiong T, Ni ZL, Zhang WD, Sun YJ, Ho WK (2013) In Situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interf 5:11392–11401

    Google Scholar 

  43. Zhao ZW, Sun YJ, Luo Q, Dong F, Li H, Ho WK (2015) Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity. Sci Rep 5:14643

    Article  CAS  Google Scholar 

  44. Shan WJ, Hu Y, Bai ZG, Zheng MM, Wei CH (2016) In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl Catal B Environ 188:1–12

    Article  CAS  Google Scholar 

  45. Chen XF, Wei J, Hou RJ, Liang Y, Xie ZL, Zhu YG, Zhang XW, Wang HT (2016) Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation. Appl Catal B Environ 188:342–350

    Article  CAS  Google Scholar 

  46. Hu B, Cai FP, Chen TJ, Fan MS, Song CJ, Yan X, Shi WD (2015) Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl Mater Interf 7:18247–18256

    Google Scholar 

  47. He YM, Wang Y, Zhang LH, Teng BT, Fan MH (2015) High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl Catal B Environ 168:1–8

    Google Scholar 

  48. Xu H, Yan J, Xu YG, Song YH, Li HM, Xia JX, Huang CJ, Wan HL (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B Environ 129:182–193

    Article  CAS  Google Scholar 

  49. Zhao ZW, Sun YJ, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37

    Article  Google Scholar 

  50. Huang JH, Ho WK, Wang XC (2014) Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem Commun 50:4338–4340

    Article  CAS  Google Scholar 

  51. Liu JH, Zhang YW, Lu LH, Wu G, Chen W (2012) Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem Commun 48:8826–8828

    Article  CAS  Google Scholar 

  52. Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  53. Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456

    Article  CAS  Google Scholar 

  54. Zhao HX, Yu HT, Quan X, Chen S, Zhang YB, Zhao HM, Wang H (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B Environ 152:46–50

    Article  Google Scholar 

  55. Wang XC, Mi WB, Jiang EY, Bai HL (2009) Structure and mechanical properties of titanium nitride/carbon nitride multilayers. Appl Surf Sci 255:4005–4010

    Article  CAS  Google Scholar 

  56. Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491

    Article  CAS  Google Scholar 

  57. Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Article  CAS  Google Scholar 

  58. Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polymer Adv Technol 16:600–607

    Google Scholar 

  59. Bing W, Chen ZW, Sun HJ, Shi P, Gao N, Ren JS, Qu XG (2015) Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res 8:1648–1658

    Article  CAS  Google Scholar 

  60. Ma SL, Zhan SH, Jia YN, Shi Q, Zhou QX (2016) Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl Catal B Environ 186:77–87

    Article  CAS  Google Scholar 

  61. Munoz-Batista MJ, Fontelles-Carceller O, Ferrer M, Fernandez-Garcia M, Kubacka A (2016) Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination. Appl Catal B Environ 183:86–95

    Article  CAS  Google Scholar 

  62. Li GY, Nie X, Chen JY, Jiang Q, An TC, Wong PK, Zhang HM, Zhao HJ, Yamashita H (2015) Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res 86:17–24

    Article  CAS  Google Scholar 

  63. Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583

    Article  CAS  Google Scholar 

  64. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  CAS  Google Scholar 

  65. Prezhdo OV, Kamat PV, Schatz GC (2011) Virtual issue: graphene and functionalized graphene. J Phys Chem C 115:3195–3197

    Article  CAS  Google Scholar 

  66. Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251

    Article  CAS  Google Scholar 

  67. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  Google Scholar 

  68. An X, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv 1:1426–1434

    Article  CAS  Google Scholar 

  69. Pham VT, Truong VK, Quinn MD, Notley SM, Guo Y, Baulin VA, Al Kobaisi M, Crawford RJ, Ivanova EP (2015) Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano 9:8458–8467

    Article  CAS  Google Scholar 

  70. Li J, Wang G, Zhu H, Zhang M, Zheng X, Di Z, Liu X, Wang X (2014) Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep 4:4359

    Google Scholar 

  71. Zou XF, Zhang L, Wang ZJ, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138:2064–2077

    Article  CAS  Google Scholar 

  72. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288

    Article  CAS  Google Scholar 

  73. Cao BC, Cao S, Dong PY, Gao J, Wang J (2013) High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater Lett 93:349–352

    Article  CAS  Google Scholar 

  74. Liu L, Bai HW, Liu JC, Sun DD (2013) Multifunctional graphene oxide-TiO2–Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater 261:214–223

    Article  CAS  Google Scholar 

  75. Yang N, Zhai J, Wang D, Chen Y, Jiang L (2010) Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–894

    Article  CAS  Google Scholar 

  76. Yoo DH, Cuong TV, Luan VH, Khoa NT, Kim EJ, Hur SH, Hahn SH (2012) Photocatalytic performance of a Ag/ZnO/CCG multidimensional heterostructure prepared by a solution-based method. J Phys Chem C 116:7180–7184

    Article  CAS  Google Scholar 

  77. Rahimi R, Zargari S, Yousefi A, Berijani MY, Ghaffarinejad A, Morsali A (2015) Visible light photocatalytic disinfection of E. coli with TiO2-graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyry. Appl Surf Sci 355:1098–1106

    Article  CAS  Google Scholar 

  78. Chang YN, Ou XM, Zeng GM, Gong JL, Deng CH, Jiang Y, Liang J, Yuan GQ, Liu HY, He X (2015) Synthesis of magnetic graphene oxide-TiO2 and their antibacterial properties under solar irradiation. Appl Surf Sci 343:1–10

    Article  CAS  Google Scholar 

  79. Fernandez-Ibanez P, Polo-Lopez MI, Malato S, Wadhwa S, Hamilton JWJ, Dunlop PSM, D'Sa R, Magee E, O'Shea K, Dionysiou DD (2015) Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J 261:36–44

    Article  CAS  Google Scholar 

  80. Gao P, Li AR, Sun DD (2014) Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2. J Hazard Mater 279:96–104

    Article  CAS  Google Scholar 

  81. Gao P, Ng K, Sun DD (2013) Sulfonated graphene oxide-ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light. J Hazard Mater 262:826–835

    Article  CAS  Google Scholar 

  82. Gao P, Liu JC, Sun DD, Ng W (2013) Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J Hazard Mater 250:412–420

    Article  Google Scholar 

  83. Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  Google Scholar 

  84. Zhang Y, Zhu YK, Yu JQ, Yang DJ, Ng TW, Wong PK, Yu JC (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6-RGO nanocomposites under visible light irradiation. Nanoscale 5:6307–6310

    Article  CAS  Google Scholar 

  85. Yi ZG, Ye JH, Kikugawa N, Kako T, Ouyang SX, Stuart-Williams H, Yang H, Cao JY, Luo WJ, Li ZS, Liu Y, Withers RL (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9:559–564

    Article  CAS  Google Scholar 

  86. Bi Y, Ouyang S, Umezawa N, Cao J, Ye J (2011) Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J Am Chem Soc 133:6490–6492

    Article  CAS  Google Scholar 

  87. Gao P, Li AR, Tai MH, Liu ZY, Sun DD (2014) A hierarchical nanostructured carbon nanofiber-In2S3 photocatalyst with high photodegradation and disinfection abilities under visible light. Chem Asian J 9:1663–1670

    Article  CAS  Google Scholar 

  88. Kang ZH, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664

    Article  CAS  Google Scholar 

  89. Kang ZH, Tsang CHA, Wong NB, Zhang ZD, Lee ST (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129:12090–12091

    Article  CAS  Google Scholar 

  90. Chiou YD, Hsu YJ (2011) Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl Catal B Environ 105:211–219

    Article  CAS  Google Scholar 

  91. Wang F, Ng WKH, Yu JC, Zhu HJ, Li CH, Zhang L, Liu ZF, Li Q (2012) Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl Catal B Environ 111–112:409–414

    Article  Google Scholar 

  92. Liu G, Niu P, Yin LC, Cheng HM (2012) α-sulfur crystals as a visible-light-active photocatalyst. J Am Chem Soc 134:9070–9073

    Article  CAS  Google Scholar 

  93. Liu G, Yin LC, Niu P, Jiao W, Cheng HM (2013) Visible-light-responsive β-rhombohedral boron photocatalysts. Angew Chem Int Ed 52:6242–6245

    Google Scholar 

  94. Yan CZ, Raghavan CM, Kang DJ (2014) Photocatalytic properties of shape-controlled ultra-long elemental Te nanowires synthesized via a facile hydrothermal method. Mater Lett 116:341–344

    Article  CAS  Google Scholar 

  95. Bookbinder DC, Lewis NS, Bradley MG, Bocarsly AB, Wrighton MS (1979) Photoelectrochemical reduction of N, N′-dimethyl-4,4′-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen. J Am Chem Soc 101:7721–7723

    Article  Google Scholar 

  96. Shao MW, Cheng L, Zhang XH, Ma DDD, Lee ST (2009) Excellent photocatalysis of HF-treated silicon nanowires. J Am Chem Soc 131:17738–17739

    Article  CAS  Google Scholar 

  97. Kang ZH, Tsang CHA, Zhang ZD, Zhang ML, Wong N, Antonio Zapien J, Shan Y, Lee ST (2007) A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. J Am Chem Soc 129:5326–5327

    Article  CAS  Google Scholar 

  98. Zhang RQ, Liu XM, Wen Z, Jiang Q (2011) Prediction of silicon nanowires as photocatalysts for water splitting: band structures calculated using density functional theory. J Phys Chem C 115:3425–3428

    Article  CAS  Google Scholar 

  99. Wang WJ, Yu JC, Xia DH, Wong PK, Li YC (2013) Graphene and g-C3N4 nanosheets cowrapped elemental alpha-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47:8724–8732

    CAS  Google Scholar 

  100. Chen YM, Lu AH, Li Y, Zhang LS, Yip HY, Zhao HJ, An TC, Wong PK (2011) Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ Sci Technol 45:5689–5695

    Article  CAS  Google Scholar 

  101. Wang F, Li CH, Li YC, Yu JC (2012) Hierarchical P/YPO4 microsphere for photocatalytic hydrogen production from water under visible light. Appl Catal B Environ 119–120:267–272

    Article  Google Scholar 

  102. Xia DH, Shen ZR, Huang GC, Wang WJ, Yu JC, Wong PK (2015) Red phosphorus: an earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light. Environ Sci Technol 49:6264–6273

    Article  CAS  Google Scholar 

  103. Sun HW, Li GY, Nie X, Shi HX, Wong PK, Zhao HJ, An TC (2014) Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks. Environ Sci Technol 48:9412–9419

    Article  CAS  Google Scholar 

  104. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 9:4094–4098

    Google Scholar 

  105. Wang WJ, Zhang LZ, An TC, Li GY, Yip HY, Wong PK (2011) Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species. Appl Catal B Environ 108:108–116

    Article  Google Scholar 

  106. Chen HM, Chen CK, Liu RS, Zhang L, Zhang JJ, Wilkinson DP (2012) Nano-architecture and material designs for water splitting photoelectrodes. Chem Soc Chem 41:5654–5671

    CAS  Google Scholar 

  107. Liu G, Yu JC, Lu GQ, Cheng HM (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47:6763–6783

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Keung Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Wang, W., Xia, D., Wong, P.K. (2017). Photocatalytic Disinfection by Metal-Free Materials. In: An, T., Zhao, H., Wong, P. (eds) Advances in Photocatalytic Disinfection. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53496-0_7

Download citation

Publish with us

Policies and ethics