Skip to main content

Synthesis and Performance of Silver Photocatalytic Nanomaterials for Water Disinfection

  • Chapter
  • First Online:
Advances in Photocatalytic Disinfection

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

As a new generation of antimicrobial materials, silver nanoparticles have shown great potential in water disinfection due to its broad-spectrum antimicrobial activities. Besides, silver nanoparticles can prevent photogenerated electron-hole recombination by trapping electron and increase visible light absorption through the surface plasmon resonance enhancement, which exhibit excellent capability in enhancing photocatalytic efficiency of traditional photocatalysts, such as TiO2, AgX (X = Cl, Br, I), and ZnO. And the photocatalysis has been widely demonstrated to inactivate microorganisms in water, which offers a low-cost, environmentally friendly, and sustainable method to achieve water disinfection. Therefore, many efforts have been made on the development and study of silver photocatalytic nanomaterials for water disinfection, and silver photocatalytic nanomaterials have shown effective antimicrobial activities through multiple mechanisms under both light and dark conditions. This chapter reviews the recent studies that are focused on the synthesis, disinfection performance, and mechanisms of silver-modified photocatalytic nanomaterials, including Ag-TiO2, Ag-AgX (X = Cl, Br, I), and Ag-ZnO. The potential disinfection mechanisms of different types of photocatalytic nanomaterials are discussed, such as photocatalysis, antimicrobial effect of silver ions, and physical attack. And different synthesis methods of nanomaterials are also summarized, including reaction steps and parameters. Furthermore, the disinfection performance of different silver photocatalytic nanomaterials is compared. This chapter will offer useful scientific and technical information for the development and synthesis of new types of silver photocatalytic nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130

    Article  CAS  Google Scholar 

  2. Lansdown AB (2002) Silver. I: its antibacterial properties and mechanism of action. J Wound Care 11(4):125–130

    Article  CAS  Google Scholar 

  3. Russell AD, Hugo WB (1994) 7 Antimicrobial activity and action of silver. Prog Med Chem 31(31):351–370

    Article  CAS  Google Scholar 

  4. Bae E, Park HJ, Lee J, Kim Y, Yoon J, Park K, Choi K, Yi J (2010) Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ Toxicol Chem 29(10):2154–2160

    Article  CAS  Google Scholar 

  5. Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46(3):823–833

    Article  CAS  Google Scholar 

  6. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474

    Article  CAS  Google Scholar 

  7. Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  CAS  Google Scholar 

  8. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  9. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33

    Article  CAS  Google Scholar 

  10. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    Article  CAS  Google Scholar 

  11. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  Google Scholar 

  12. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    Article  CAS  Google Scholar 

  13. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96

    Article  CAS  Google Scholar 

  14. Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci Processes Impacts 15(1):78–92

    Article  Google Scholar 

  15. Zhang HY, Smith JA, Oyanedel-Craver V (2012) The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res 46(3):691–699

    Article  CAS  Google Scholar 

  16. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  17. Sarina S, Waclawik ER, Zhu H (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15(38):1814–1833

    Article  CAS  Google Scholar 

  18. Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42(5):8467–8493

    Article  CAS  Google Scholar 

  19. Chen X, Zheng Z, Ke X, Jaatinen E, Xie T, Wang D, Guo C, Zhao J, Zhu H (2010) Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem 12(3):414–419

    Article  CAS  Google Scholar 

  20. Xi C, Zhu HY, Zhao JC, Zheng ZF, Gao XP (2008) Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chem 47(29):5433–5436

    Google Scholar 

  21. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. New York Wiley 307(1):290–291

    Google Scholar 

  22. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214

    Article  CAS  Google Scholar 

  23. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  24. Herrmann J-M, Tahiri H, Ait-Ichou Y, Lassaletta G, Gonzalez-Elipe AR, Fernandez A (1997) Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Appl Catal B-Environ 13(96):219–228

    Article  CAS  Google Scholar 

  25. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680

    Article  CAS  Google Scholar 

  26. Ma JZ, Xiong ZG, Waite TD, Ng WJ, Zhao XS (2011) Enhanced inactivation of bacteria with silver-modified mesoporous TiO2 under weak ultraviolet: irradiation. Micropor Mesopor Mat 144(1–3):97–104

    Article  CAS  Google Scholar 

  27. Srisitthiratkul C, Pongsorrarith V, Intasanta N (2011) The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Appl Surf Sci 257(21):8850–8856

    Article  CAS  Google Scholar 

  28. Kubacka A, Ferrer M, Martínez-Arias A, Fernández-García M (2008) Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation. Appl Catal B Environ 84(1–2):87–93

    Article  CAS  Google Scholar 

  29. Akhavan O (2009) Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336(1):117–124

    Article  CAS  Google Scholar 

  30. Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42(1–2):356–362

    Article  Google Scholar 

  31. Yang L, Wang X, Fan Y, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag-TiO2 composite films. Micropor Mesopor Mat 114(1–3):431–439

    Google Scholar 

  32. Liga MV, Bryant EL, Colvin VL, Li Q (2011) Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45(2):535–544

    Article  CAS  Google Scholar 

  33. Mai L, Wang D, Zhang S, Xie Y, Huang C, Zhang Z (2010) Synthesis and bactericidal ability of Ag-TiO2 composite films deposited on titanium plate. Appl Surf Sci 257(3):974–978

    Article  CAS  Google Scholar 

  34. Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2006) Titania and silver–titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17(1):95–104

    Article  Google Scholar 

  35. Liu F, Liu H, Li X, Zhao H, Zhu D, Zheng Y, Li C (2012) Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Appl Surf Sci 258(10):4667–4671

    Article  CAS  Google Scholar 

  36. Foster HA, Pemble ME, Steele A (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photoch Photobio A 187(1):53–63

    Article  Google Scholar 

  37. Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photoch Photobio A 216(2–3):283–289

    Article  CAS  Google Scholar 

  38. Grieken RV, Marugán J, Sordo C, Martínez P, Pablos C (2009) Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Appl Catal B Environ 93(1–2):112–118

    Article  Google Scholar 

  39. Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Ruiz F, Hoek EMV (2011) Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ Sci Technol 45(20):8989–8995

    Article  CAS  Google Scholar 

  40. Hsieh JH, Yu RB, Chang YK, Li C (2012) Structural analysis of TiO2 and TiO2-Ag thin films and their antibacterial behaviors. In: Journal of physics: conference series., p 2374

    Google Scholar 

  41. Lin WC, Chen CN, Tseng TT, Wei MH, Hsieh JH, Tseng WJ (2010) Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for bactericidal and photocatalytic activities. J Eur Ceram Soc 30(14):2849–2857

    Article  CAS  Google Scholar 

  42. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH (2010) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3(4):244–255

    Article  CAS  Google Scholar 

  43. Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41(2):379–386

    Article  CAS  Google Scholar 

  44. Keleher J, Bashant J, Heldt N, Johnson L, Li Y (2002) Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. World J Microbiol Biotechnol 18(2):133–139

    Article  CAS  Google Scholar 

  45. Jiang J, Li H, Zhang LZ (2012) New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem Eur J 18(20):6360–6369

    Article  CAS  Google Scholar 

  46. Hu X, Hu C, Peng T, Zhou X, Qu J (2010) Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-AgI/Al2O3 under visible-light irradiation. Environ Sci Technol 44(9):1425–1431

    Google Scholar 

  47. Wang XP, Tang YX, Chen Z, Lim TT (2012) Highly stable heterostructured Ag-AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria. J Mater Chem 22(43):23149–23158

    Article  CAS  Google Scholar 

  48. Chang X, Sun S, Dong L, Yin Y (2012) Efficient synthesis of Ag/AgCl/W18O49 nanorods and their antibacterial activities. Mater Lett 83(12):133–135

    Article  CAS  Google Scholar 

  49. Zhang LS, Wong KH, Yip HY, Hu C, Yu JC, Chan CY, Wong PK (2010) Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals. Environ Sci Technol 44(4):1392–1398

    Article  CAS  Google Scholar 

  50. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110(29):4066–4072

    Article  CAS  Google Scholar 

  51. Elahifard MR, Rahimnejad S, Haghighi S, Gholami MR (2007) Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J Am Chem Soc 129(31):9552–9553

    Article  CAS  Google Scholar 

  52. Tuncer M, Seker E (2011) Single step sol-gel made silver chloride on titania xerogels to inhibit E. coli bacteria growth: effect of preparation and chloride ion on bactericidal activity. J Sol-Gel Sci Techn 59(2):304–310(307)

    Google Scholar 

  53. Padervand M, Elahifard MR, Meidanshahi RV, Ghasemi S, Haghighi S, Gholami MR (2012) Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO2 composites. Mater Sci Semicond Process 15(1):73–79

    Article  CAS  Google Scholar 

  54. Peng W, Baibiao H, Qianqian Z, Xiaoyang Z, Xiaoyan Q, Ying D, Jie Z, Jiaoxian Y, Haixia L, Zaizhu L (2010) Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br, I). Chem Eur J 16(33):10042–10047

    Article  Google Scholar 

  55. Peng W, Huang B, Qin X, Zhang X, Ying D, Whangbo MH (2009) Ag/AgBr/WO3 · H2O: visible-light photocatalyst for bacteria destruction. Inorg Chem 48(22):10697–10702

    Article  Google Scholar 

  56. Hu C, Peng T, Hu X, Nie Y, Zhou X, Qu J, He H (2009) Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. J Am Chem Soc 132(9):1425–1431

    Google Scholar 

  57. Zhou J, Cheng Y, Yu J (2011) Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J Photoch Photobio A 223(2):82–87

    Article  CAS  Google Scholar 

  58. Zhou X, Hu C, Hu X, Peng T, Qu J (2010) Plasmon-assisted degradation of toxic pollutants with Ag−AgBr/Al2O3 under visible-light irradiation. J Phys Chem C 114(6):2746–2750

    Article  CAS  Google Scholar 

  59. Long K, Baoyou G, Xiaoting C, Yanyan Z, Yinchan L (2010) Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst. Langmuir 26(24):18723–18727

    Article  Google Scholar 

  60. Hui X, Li H, Xia J, Sheng Y, Luo Z, Ling L, Li X (2010) One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid. Acs Appl Mater Inter 3(1):22–29

    Google Scholar 

  61. Lei J, Wang W, Song M, Dong B, Li Z, Wang C, Li L (2011) Ag/AgCl coated polyacrylonitrile nanofiber membranes: synthesis and photocatalytic properties. React Funct Polym 71(11):1071–1076

    Article  CAS  Google Scholar 

  62. Li Y, Ding Y (2010) Porous AgCl/Ag nanocomposites with enhanced visible light photocatalytic properties. J Phys Chem C 114(7):3175–3179

    Article  CAS  Google Scholar 

  63. Peng S, Sun Y (2011) Ripening of bimodally distributed AgCl nanoparticles. J Mater Chem 21(31):11644–11650

    Article  CAS  Google Scholar 

  64. Jiang J, Zhang LZ (2011) Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag and its daylight-driven plasmonic photocatalysis. Chem Eur J 17(13):3710–3717

    Article  CAS  Google Scholar 

  65. An CH, Wang RP, Wang ST, Zhang XY (2011) Converting AgCl nanocubes to sunlight-driven plasmonic AgCl:Ag nanophotocatalyst with high activity and durability. J Mater Chem 21(31):11532–11536

    Article  CAS  Google Scholar 

  66. Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B: Biointerfaces 115(3):359–367

    Article  CAS  Google Scholar 

  67. Thongsuriwong K, Amornpitoksuk P, Suwanboon S (2012) Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol–gel dip-coating method. J Sol-Gel Sci Technol 62(3):304–312

    Article  CAS  Google Scholar 

  68. Pan X, Peng L, Liu Y, Wang J (2014) Highly antibacterial and toughened polystyrene composites with silver nanoparticles modified tetrapod-like zinc oxide whiskers. J Appl Polym Sci 131(20):1366–1373

    Google Scholar 

  69. Yi Z, Gao X, Lei Z, Xin L, Wei J, Sun Y, Jie Y (2014) The synergetic antibacterial activity of Ag islands on ZnO (Ag-ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem 130(1):74–83

    Google Scholar 

  70. Lu W, Liu G, Gao S, Xing S, Wang J (2008) Tyrosine-assisted preparation of Ag-ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19(44):17486

    Article  Google Scholar 

  71. Shekhar A, Geetika B, Suparna M, Soumyo M (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7:7415–7429

    Article  Google Scholar 

  72. Michael RJV, Sambandam B, Muthukumar T, Umapathy MJ, Manoharan PT (2014) Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis. Phys Chem Chem Phys 16(18):8541–8555

    Article  CAS  Google Scholar 

  73. Jafari A, Ghane M, Arastoo S (2011) Synergistic antibacterial effects of nano zinc oxide combined with silver nanocrystales. Afr J Microbiol Res 5(30):5465–5473

    CAS  Google Scholar 

  74. Bechambi O, Chalbi M, Najjar W, Sayadi S (2015) Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl Surf Sci 347:414–420

    Article  CAS  Google Scholar 

  75. Das S, Sinha S, Suar M, Yun SI, Mishra A, Tripathy SK (2015) Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core-shell structure nanocomposites. J Photochem Photobiol B 142:68–76

    Article  CAS  Google Scholar 

  76. Koga H, Kitaoka T, Wariishi H (2009) In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J Mater Chem 19:2135–2140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyou Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Hu, Y., Hong, X. (2017). Synthesis and Performance of Silver Photocatalytic Nanomaterials for Water Disinfection. In: An, T., Zhao, H., Wong, P. (eds) Advances in Photocatalytic Disinfection. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53496-0_5

Download citation

Publish with us

Policies and ethics