Skip to main content

Visible Light Photocatalysis of Natural Semiconducting Minerals

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Semiconducting minerals of rutile (TiO2) and sphalerite (ZnS) are visible light (VL)-responsive photocatalysts in nature. The substitutions of metal ions for TiIV and ZnII make their electronic structure differ from their “pure” counterparts and result in the broad absorption of VL. The conduction band of sphalerite is negative enough to photoreduce many organics. While, the valence band potential of rutile is more positive than sphalerite, which enables it with stronger oxidation ability. Their good VL photocatalytic activities are therefore verified by the photooxidation of methyl orange (MO) by rutile’s valence band holes and photoreduction of carbon tetrachloride (CT) by sphalerite’s conduction band electrons, respectively. The abundant deposition and low cost make natural rutile and sphalerite, along with other semiconducting minerals, promising candidates for developing green photocatalytic technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schoonen M, Smirnov A, Cohn C (2004) A perspective on the role of minerals in prebiotic synthesis. Ambio 33:539–551

    Article  Google Scholar 

  2. Rosso KM (2001) Structure and reactivity of semiconducting mineral surfaces: convergence of molecular modeling and experiment. Rev Mineral Geochem 42:199–272

    Article  CAS  Google Scholar 

  3. Lu A, Li Y, Jin S, Wang X, Wu XL, Zeng C, Li Y, Ding H, Hao R, Lv M, Wang C, Tang Y, Dong H (2012) Growth of nonphototrophic microorganisms on solar energy through mineral photocatalysis. Nat Commun 3:768–775

    Article  Google Scholar 

  4. Shuey RT (1975) Semiconducting ore minerals. Elsevier, Amsterdam

    Google Scholar 

  5. Xu Y, Schoonen M (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Article  CAS  Google Scholar 

  6. Lu A (2013) Mineralogical photocatalysis in natural self-purification of inorganic minerals. Acta Petrologica Et Mineralogica 22:323–331

    Google Scholar 

  7. Schoonen M, Xu Y, Strongin DR (1998) An introduction to geocatalysis. J Geochem Explor 62:201–215

    Article  CAS  Google Scholar 

  8. Selli E, Giorgi AD, Bidoglio G (1996) Humic acid-sensitized photoreduction of Cr(VI) on ZnO particles. Environ Sci Technol 30:598–604

    Article  CAS  Google Scholar 

  9. Stumm W, Morgan JJ (1995) Aquatic chemistry: chemical equilibrium and rates in natural waters, P. imprenta. Wiley, New York, p 1022

    Google Scholar 

  10. Sulzberger B (1990) Aquatic chemical kinetics: reaction rates of processes in natural waters, Environmental Science and Technology Series. Wiley, New York, pp 401–429

    Google Scholar 

  11. Linsebigler AL, Lu GQ, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  12. Sun CC, Chou TC (2000) Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO2/Ti electrode. J Mol Catal A Chem 151:133–145

    Article  CAS  Google Scholar 

  13. Fujishima A, Zhang XT (2006) Titanium dioxide photocatalysis: present situation and future approach. C R Chim 9:750–760

    Article  CAS  Google Scholar 

  14. Yin H, Wada Y, Kitamura T, Yanagida S (2001) Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysis. Environ Sci Technol 35:227–231

    Article  CAS  Google Scholar 

  15. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:4

    Google Scholar 

  16. Benedix R, Dehn F, Quaas J, Orgass M (2000) Leipzig annual civil engineering report no. 5. Institut für Massivbau und Baustofftechnologie, Leipzig, p 161

    Google Scholar 

  17. Muraoka Y, Yamauchi T, Ueda Y, Hiroi Z (2002) Efficient photocarrier injection in a transition metal oxide heterostructure. J Phys Condens Matter 14:757

    Article  Google Scholar 

  18. Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1999) J Photochem Photobiol A Chem 127:107

    Article  CAS  Google Scholar 

  19. Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM (1999) J Mater Sci 34:5273

    Article  CAS  Google Scholar 

  20. Depero LE (1993) Coordination geometry and catalytic activity of vanadium on Tio2 surfaces. J Solid State Chem 103:528–532

    Article  CAS  Google Scholar 

  21. Yu JC, Lin J, Kwok RWM (1997) J Photochem Photobiol A Chem 111:199

    Article  CAS  Google Scholar 

  22. Yu XB, Wang GH, Luo YQ, Chen XH, Zu J (2000) J Shanghai Norm Univ 29:75

    Google Scholar 

  23. Yu XY, Cheng JJ (2001) J Inorg Mater 16:742

    CAS  Google Scholar 

  24. Liu J, Lu AH, Guo YJ, Li N, Li QR, Zheng J (2003) Acta Petrol Mineral 22:339

    CAS  Google Scholar 

  25. Lu AH, Liu J, Zhao DG, Guo YJ, Li QR, Li N (2004) Catal Today 90:337

    Article  CAS  Google Scholar 

  26. Lu AH, Guo YJ, Liu J, Liu F, Wang CQ, Li N, Li QR (2004) Chin Sci Bull 49:2284

    Article  CAS  Google Scholar 

  27. Al-Qaradawi S, Salman SR (2002) J Photochem Photobiol A Chem 148:161

    Article  CAS  Google Scholar 

  28. Ballirano P, Caminiti R (2001) Rietveld refinements on laboratory energy dispersive X-ray diffraction (EDXD) data. J Appl Crystallogr 34:757–762

    Article  CAS  Google Scholar 

  29. Li Y, Lu AH, Wang CQ, Wu XL (2008) Characterization of natural sphalerite as a novel visible light-driven photocatalyst. Sol Energy Mater Sol Cells 92:953–959

    Article  CAS  Google Scholar 

  30. Lin J, Yu JC, Lo D, Lam SK (1999) Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions. J Catal 183:368–372

    Article  CAS  Google Scholar 

  31. Lu AH, Li Y, Lv M, Wang CQ, Yang L, Liu J, Wang YH, Wong KH, Wong PK (2007) Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light. Sol Energy Mater Sol Cells 91:1849–1855

    Article  CAS  Google Scholar 

  32. Zang L, Liu CY, Ren XM (1995) Photochemistry of semiconductor particles 3. Effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols. J Photochem Photobiol A Chem 85:239

    Article  CAS  Google Scholar 

  33. Piscopo A, Robert D, Weber JV (2001) J Photochem Photobiol A Chem 139:253

    Article  CAS  Google Scholar 

  34. Kudo A, Tsuji I, Kato H (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 1958

    Google Scholar 

  35. Lei ZB, Ma GJ, Liu MY, You WS, Yan HJ, Wu GP, Takata T, Hara M, Domen K, Li C (2006) Sulfur-substituted and zinc-doped In (OH) (3): a new class of catalyst for photocatalytic H2 production from water under visible light illumination. J Catal 237:322–329

    Article  CAS  Google Scholar 

  36. Geng BY, Liu XW, Du QB, Wei XW, Zhang LD (2006) Structure and optical properties of periodically twinned ZnS nanowires. Appl Phys Lett 88:1631041–1631043

    Article  Google Scholar 

  37. Godby RW, Schlüter M, Sham LJ (1986) Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. Phys Rev Lett 56:2415–2418

    Article  CAS  Google Scholar 

  38. Leung TY, Chan CY, Hu C, Yu JC, Wong PK (2008) Photocatalytic disinfection of marine bacteria using fluorescent light. Water Res 42:4827–4837

    Article  CAS  Google Scholar 

  39. Al-Quadawi S, Salman SR (2002) Photocatalytic degradation of methyl orange as a model compound. J Photoch Photobio A 148:161–168

    Article  Google Scholar 

  40. Miyauchi M, Takashio M, Tobimatsu H (2004) Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. Langmuir 20:232–236

    Article  CAS  Google Scholar 

  41. Ohno T, Masaki Y, Hirayama S, Matsumura M (2001) TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J Catal 204:163–168

    Article  CAS  Google Scholar 

  42. Rincon AG, Pulgarin C (2004) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 – implications in solar water disinfection. Appl Catal B Environ 51:283–302

    Article  CAS  Google Scholar 

  43. Li XZ, Chen CC, Zhao JC (2001) Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17:4118–4122

    Article  CAS  Google Scholar 

  44. Morris D, Dixon R, Jones FH, Dou Y, Egdell RG, Downes SW, Beamson G (1997) Nature of band-gap states in V-doped TiO2 revealed by resonant photoemission. Phys Rev B 55:16083–16087

    Article  CAS  Google Scholar 

  45. Choi WY, Hoffmann MR (1995) Photoreductive mechanism of CCl4 degradation on TiO2 particles and effects of electron-donors. Environ Sci Technol 29:1646–1654

    Article  CAS  Google Scholar 

  46. Lal M, Schoneich C, Monig J, Asmus KD (1988) Rate constants for the reactions of halogenated organic radicals. Int J Radiat Biol 54:773–785

    Article  CAS  Google Scholar 

  47. Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25:1522–1529

    Article  CAS  Google Scholar 

  48. Yang X, Li Y, Lu AH, Yan YH, Wang CQ, Wong PK (2011) Photocatalytic reduction of carbon tetrachloride by natural sphalerite under visible light irradiation. Sol Energy Mater Sol Cells 95:1915–1921

    Article  CAS  Google Scholar 

  49. Winkelmann K, Calhoun RL, Mills G (2006) Chain photoreduction of CCl3F in TiO2 suspensions: enhancement induced by O-2. J Phys Chem A 110:13827–13835

    Article  CAS  Google Scholar 

  50. Stanbury D (1989) Reduction potentials involving inorganic free radicals in aqueous solution. Adv Inorg Chem 33:69–138

    Article  CAS  Google Scholar 

  51. Calhoun RL, Winkelmann K, Mills G (2001) Chain photoreduction of CCl3F induced by TiO2 particles. J Phys Chem B 105:9739–9746

    Article  CAS  Google Scholar 

  52. Stumm W, Sulzberger B (1992) The cycling of iron in natural environments – considerations based on laboratory studies of heterogeneous redox processes. Geochim Cosmochim Acta 56:3233–3257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, Program No. 2014CB846001) and the National Natural Science Foundation of China (Grant No. 41230103 & 41272003 & 41522201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhuai Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Li, Y. et al. (2017). Visible Light Photocatalysis of Natural Semiconducting Minerals. In: An, T., Zhao, H., Wong, P. (eds) Advances in Photocatalytic Disinfection. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53496-0_2

Download citation

Publish with us

Policies and ethics