Skip to main content

Mechanistic Modeling of Photocatalytic Water Disinfection

  • Chapter
  • First Online:
Advances in Photocatalytic Disinfection

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1117 Accesses

Abstract

In this chapter, conceptual and mechanistic models for water disinfection are discussed. The goal is to describe fundamental interactions between microbial cells and TiO2 catalyst suspensions, and the light-induced chemical species that ultimately lead to cell inactivation. A number of disinfection models have been developed to address the kinetics of these interactions and they are examined here. In general, photocatalytic disinfection data has been fitted to many empirical models. However, frequent deviations from such models have been widely reported. Although empirical models can be very useful, they do not allow designers to explicitly determine the overall influence of important parameters such as catalyst concentration, light intensity, ionic strength, and pH on the disinfection process. It is difficult to account for many of the complex interactions that occur during photocatalytic inactivation without over-fitting data with numerous parameters. A major benefit of a mechanistic model is the significant cost reduction associated with performing fewer preliminary experiments to determine the effectiveness of various factors. These may include, for example, catalyst concentration and light intensity for a given organism.

In our own work, we have proposed a model that is consistent with processes involving the attachment of titanium dioxide (TiO2) nanoparticles to the bacterial cell surface, the adsorption of inorganic salts to the TiO2 surface (inhibition phenomena), light propagation through the suspension, the quantum yield of hydroxyl radical generation, and cell surface oxidation. Unknown inactivation kinetic parameters were derived from the fits of experimental data. The good fit of the model to the experimental results indicates that high levels of inactivation can be achieved by maintaining a relatively low catalyst-to-microbe ratio while maximizing the light intensity at low to moderate ionic strength. These results and others from literature suggest that mechanistic modeling of photocatalytic disinfection should allow for predictive capability of this important process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allouni ZE et al (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B: Biointerfaces 68(1):83–87

    Article  CAS  Google Scholar 

  2. Gumy D et al (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B Environ 63(1–2):76–84

    Article  CAS  Google Scholar 

  3. Sentein C et al (2009) Dispersion and stability of TiO2 nanoparticles synthesized by laser pyrolysis in aqueous suspensions. J Phys Conf Ser 170(1):012013

    Article  CAS  Google Scholar 

  4. Dalrymple OK et al (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B Environ 98(1–2):27–38

    Article  CAS  Google Scholar 

  5. Boström M et al (2006) Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv Colloid Interf Sci 123–126:5–15

    Article  CAS  Google Scholar 

  6. Boström M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87(16):168103

    Article  CAS  Google Scholar 

  7. Lyklema J, van Leeuwen HP, Minor M (1999) DLVO-theory, a dynamic re-interpretation. Adv Colloid Interf Sci 83(1–3):33–69

    Article  CAS  Google Scholar 

  8. Al-Abadleh HA, Grassian VH (2003) Oxide surfaces as environmental interfaces. Surf Sci Rep 52(3–4):63–161

    Article  CAS  Google Scholar 

  9. Brown GE Jr (2001) Surface science: how minerals react with water. Science 294(5540):67–69

    Article  CAS  Google Scholar 

  10. Boehm HP (1971) Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 52:264–275

    Article  Google Scholar 

  11. Stefanovich EV, Truong TN (1999) Ab initio study of water adsorption on TiO2(110): molecular adsorption versus dissociative chemisorption. Chem Phys Lett 299(6):623–629

    Article  CAS  Google Scholar 

  12. William HC, Marcus AC (1993) Brønsted reactions on oxide mineral surfaces and the temperature-dependence of their dissolution rates. Aquat Sci 55(4):304–313

    Article  Google Scholar 

  13. Hoffmann MR et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  14. Davis James A, Leckie James O (1979) Speciation of adsorbed ions at the oxide/water interface. In: Chemical modeling in aqueous systems. American Chemical Society, Washington, DC, pp 299–317

    Chapter  Google Scholar 

  15. Yurdakal S et al (2007) Optical properties of TiO2 suspensions: influence of pH and powder concentration on mean particle size. Ind Eng Chem Res 46(23):7620–7626

    Article  CAS  Google Scholar 

  16. Predota M et al (2004) Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments. J Phys Chem B 108(32):12061–12072

    Article  CAS  Google Scholar 

  17. Kormann C, Bahnemann DW, Hoffmann MR (1991) Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ Sci Technol 25(3):494–500

    Article  CAS  Google Scholar 

  18. Gonzalez-Caballero F, Shilov VN (2006) Electrical double-layer at a colloid particle. In: Encyclopedia of surface and colloid science, 2nd edn. Taylor & Francis, New York, pp 1932–1936

    Google Scholar 

  19. Imae T, Muto K, Ikeda S (1991) The pH dependence of dispersion of TiO2 particles in aqueous surfactant solutions. Colloid Polym Sci 269(1):43–48

    Article  CAS  Google Scholar 

  20. Cabuil V et al (2004) Stability of TiO2 suspensions in reactors for degradation of toxic pollutants. In: Cabuil V, Leviz P, Treiner C (eds) Trends in colloid and interface science XVII. Springer, Berlin/Heidelberg, pp 117–120

    Google Scholar 

  21. French RA et al (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359

    Article  CAS  Google Scholar 

  22. Watts RJ, Kong S, Lee W (1995) Sedimentation and reuse of titanium dioxide: application to suspended-photocatalyst reactors. J Environ Eng 121(10):730–735

    Article  CAS  Google Scholar 

  23. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501

    Article  CAS  Google Scholar 

  24. Stern O (1924) The theory of the electric double layer. Z Elektrochem 30:508

    CAS  Google Scholar 

  25. Rodriguez R, Blesa MA, Regazzoni AE (1996) Surface complexation at the TiO2(anatase)/aqueous solution interface: chemisorption of catechol. J Colloid Interface Sci 177(1):122–131

    Article  CAS  Google Scholar 

  26. Lausmaa J, Löfgren P, Kasemo B (1999) Adsorption and coadsorption of water and glycine on TiO2. J Biomed Mater Res 44(3):227–242

    Article  CAS  Google Scholar 

  27. Weng Y-X et al (2003) Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. J Phys Chem B 107(18):4356–4363

    Article  CAS  Google Scholar 

  28. Olivera P, Patrito M, Sellers H et al (1999) Electronic structure calculations of polyatomic oxyanions adsorbed on metal surfaces. In: Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, Inc, New York

    Google Scholar 

  29. Kazarinov VE, Andreev VN, Mayorov AP (1981) Investigation of the adsorption properties of the TiO2 electrode by the radioactive tracer method. J Electroanal Chem Interfacial Electrochem 130:277–285

    Article  CAS  Google Scholar 

  30. Horányi G (2003) Investigation of the specific adsorption of sulfate ions on powdered TiO2. J Colloid Interface Sci 261(2):580–583

    Article  CAS  Google Scholar 

  31. Magdigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Pearson Education, Inc, Upper Saddle River, p 992

    Google Scholar 

  32. Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178(3):768–773

    Article  CAS  Google Scholar 

  33. van Loosdrecht MCM et al (1989) Bacterial adhesion: a physicochemical approach. Microb Ecol 17(1):1–15

    Article  Google Scholar 

  34. Oleary WM (1962) Fatty acids of bacteria. Bacteriol Rev 26(4):421–447

    CAS  Google Scholar 

  35. Cronan JE Jr, Gelmann EP (1973) An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J Biol Chem 248(4):1188–1195

    CAS  Google Scholar 

  36. Magnuson K et al (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Mol Biol Rev 57(3):522–542

    CAS  Google Scholar 

  37. Cox JS et al (1999) Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ Sci Technol 33(24):4514–4521

    Article  CAS  Google Scholar 

  38. Martinez RE et al (2002) Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous pKa distribution method. J Colloid Interface Sci 253(1):130–139

    Article  CAS  Google Scholar 

  39. van der Wal A et al (1997) Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf B: Biointerfaces 9(1–2):81–100

    Google Scholar 

  40. Jiang W et al (2004) Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20(26):11433–11442

    Article  CAS  Google Scholar 

  41. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60(1):151–166

    CAS  Google Scholar 

  42. Poortinga AT et al (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47(1):1–32

    Article  CAS  Google Scholar 

  43. Poortinga AT (2001) Electric double layer interactions in bacterial adhesion and detachment. In: Institute of biomedical materials science and applications. University of Groningen, Groningen, p 170

    Google Scholar 

  44. Sonohara R et al (1995) Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem 55(3):273–277

    Article  CAS  Google Scholar 

  45. Ohshima H, Kondo T (1990) Relationship among the surface potential, Donnan potential and charge density of ion-penetrable membranes. Biophys Chem 38(1–2):117–122

    Article  CAS  Google Scholar 

  46. Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interf Sci 62(2–3):189–235

    Article  CAS  Google Scholar 

  47. Busscher HJ, Weerkamp AH (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Lett 46(2):165–173

    Article  CAS  Google Scholar 

  48. Wasserman E, Felmy AR (1998) Computation of the electrical double layer properties of semipermeable membranes in multicomponent electrolytes. Appl Environ Microbiol 64(6):2295–2300

    CAS  Google Scholar 

  49. Makino K, Ohshima H, Kondo T (1987) Surface potential of an ion-penetrable charged membrane. J Theor Biol 125(3):367–368

    Article  CAS  Google Scholar 

  50. Van Oss CJ (1994) Interfacial forces in aqueous media. M. Dekker, New York

    Google Scholar 

  51. Luttge A, Zhang L, Nealson KH (2005) Mineral surfaces and their implications for microbial attachment: results from Monte Carlo simulations and direct surface observations. Am J Sci 305(6–8):766–790

    Article  CAS  Google Scholar 

  52. Jucker BA et al (1997) Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds. Colloids Surf B: Biointerfaces 9(6):331–343

    Article  CAS  Google Scholar 

  53. Landini P, Zehnder AJB (2002) The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J Bacteriol 184(6):1522–1529

    Article  CAS  Google Scholar 

  54. Taguchi T et al (1990) Interaction between an ion-penetrable particle and a solid particle. II. Criteria for heterocoagulation. Colloid Polym Sci 268(1):83–87

    Article  CAS  Google Scholar 

  55. Terui H et al (1990) Interaction between an ion-penetrable particle and a solid particle. 1. Electrical double-layer interaction. Colloid Polym Sci 268(1):76–82

    Article  CAS  Google Scholar 

  56. Ohshima H, Kondo T (1993) Electrostatic interaction of an ion-penetrable sphere with a hard plate: contribution of image interaction. J Colloid Interface Sci 157(2):504–508

    Article  CAS  Google Scholar 

  57. Hsu J-P, Liu B-T (1998) Electrical interaction between two spherical particles covered by an ion-penetrable charged membrane. Chem Phys 236(1–3):63–76

    Article  CAS  Google Scholar 

  58. Kuo Y-C, Hsieh M-Y, Hsu J-P (2002) Interactions between a particle covered by an ion-penetrable charged membrane and a charged surface: a modified Gouy-Chapman theory. Langmuir 18(7):2789–2794

    Article  CAS  Google Scholar 

  59. Fernandez-Ibanez P et al (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res 37(13):3180–3188

    Article  CAS  Google Scholar 

  60. Adamczyk Z et al (1994) Kinetics of localized adsorption of colloid particles. Adv Colloid Interf Sci 48:151–280

    Article  Google Scholar 

  61. Oberholzer MR et al (1997) 2-D and 3-D interactions in random sequential adsorption of charged particles. J Colloid Interface Sci 194(1):138–153

    Article  CAS  Google Scholar 

  62. Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44(10):3888–3894

    Article  Google Scholar 

  63. Adamczyk Z et al (1990) Structure and ordering in localized adsorption of particles. J Colloid Interface Sci 140(1):123–137

    Article  CAS  Google Scholar 

  64. Adamczyk Z (2000) Kinetics of diffusion-controlled adsorption of colloid particles and proteins. J Colloid Interface Sci 229(2):477–489

    Article  CAS  Google Scholar 

  65. Yang Q et al (2005) Light distribution field in catalyst suspensions within an annular photoreactor. Chem Eng Sci 60(19):5255–5268

    Article  CAS  Google Scholar 

  66. Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond A Math Phys Sci 235(1203):518–536

    Article  CAS  Google Scholar 

  67. Kuhn HJ, Braslavsky SE, Schmidt R (2004) Chemical actinometry. Pure Appl Chem 76(12):2105–2146

    Article  CAS  Google Scholar 

  68. Bunce NJ, LaMarre J, Vaish SP (1984) Photorearrangement of azoxybenzene to 2-hydroxyazobenzene: a convenient chemical actinometer. Photochem Photobiol 39(4):531–533

    Article  CAS  Google Scholar 

  69. Sun L, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 100(10):4127–4134

    Article  CAS  Google Scholar 

  70. Zhang H, Chen G, Bahnemann DW (2010) Environmental photo(electro)catalysis: fundamental principles and applied catalysts. In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer, New York

    Google Scholar 

  71. Rincon A-G, Pulgarin C (2004) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection. Appl Catal B Environ 51(4):283–302

    Article  CAS  Google Scholar 

  72. Chu W, Wong CC (2004) The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Res 38(4):1037–1043

    Article  CAS  Google Scholar 

  73. Wong CC, Chu W (2003) The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions. Environ Sci Technol 37(10):2310–2316

    Article  CAS  Google Scholar 

  74. Wang Y, Hong C-s (1999) Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions. Water Res 33(9):2031–2036

    Article  CAS  Google Scholar 

  75. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35

    Article  CAS  Google Scholar 

  76. Matsunaga T et al (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214

    Article  CAS  Google Scholar 

  77. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122(1):178

    Article  CAS  Google Scholar 

  78. Thiebaud J, Thevent F, Fittschen C (2010) OH radicals and H2O2 molecules in the gas phase near to TiO2 surfaces. J Phys Chem C 114(7):3082–3088

    Article  CAS  Google Scholar 

  79. Lee MC, Choi W (2002) Solid phase photocatalytic reaction on the soot/TiO2 interface: the role of migrating OH radicals. J Phys Chem B 106(45):11818–11822

    Article  CAS  Google Scholar 

  80. Murakami Y et al (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J Phys Chem B 110(34):16808–16811

    Article  CAS  Google Scholar 

  81. Roots R, Okada S (1975) Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res 64(2):306–320

    Article  CAS  Google Scholar 

  82. Murakami Y et al (2007) Can OH radicals diffuse from the UV-irradiated photocatalytic TiO2 surfaces? Laser-induced-fluorescence study. J Phys Chem C 111(30):11339–11346

    Article  CAS  Google Scholar 

  83. Svishchev IM, Plugatyr AY (2005) Hydroxyl radical in aqueous solution: computer simulation. J Phys Chem B 109(9):4123–4128

    Article  CAS  Google Scholar 

  84. Campo MG, Grigera JR (2005) Classical molecular-dynamics simulation of the hydroxyl radical in water. J Chem Phys 123(8):084507

    Article  CAS  Google Scholar 

  85. Kupperman A (1967) Diffusion model of the radiation chemistry of aqueous solutions. In: Silini G (ed) Radiation Research: proceedings of the Third International Congress of Radiation Research. Wiley, New York, pp 212–234

    Google Scholar 

  86. Vassilev P, Louwerse MJ, Baerends EJ (2004) Ab initio molecular dynamics simulation of the OH radical in liquid water. Chem Phys Lett 398(1–3):212–216

    Article  CAS  Google Scholar 

  87. Campo MG, Grigera JR (2005) Classical molecular-dynamics simulation of the hydroxyl radical in water. J Chem Phys 123(8):084507–6

    Article  CAS  Google Scholar 

  88. Haas CN (1980) A mechanistic kinetic model for chlorine disinfection. Environ Sci Technol 14(3):339–340

    Article  CAS  Google Scholar 

  89. Halliwell B, Gutteridge J (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  90. Pryor WA (ed) (1976) Free radicals in biology. Vol. 1. Academic Press, Inc, New York, p 287

    Google Scholar 

  91. Dean RT et al (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(1):1–18

    Article  CAS  Google Scholar 

  92. Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta Bioenergetics 1504(2–3):196–219

    Article  CAS  Google Scholar 

  93. Gutteridge JMC (1984) Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide. FEBS Lett 172(2):245–249

    Article  CAS  Google Scholar 

  94. Cheng YW, Chan RCY, Wong PK (2007) Disinfection of Legionella pneumophila by photocatalytic oxidation. Water Res 41(4):842–852

    Article  CAS  Google Scholar 

  95. Lu Z-X et al (2003) Cell damage induced by photocatalysis of TiO2 thin films. Langmuir 19(21):8765–8768

    Article  CAS  Google Scholar 

  96. Huang N-P et al (1997) The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells. J Photochem Photobiol A Chem 108(2–3):229–233

    Article  CAS  Google Scholar 

  97. Stefan IL, Irwin F (1999) Superoxide and iron: partners in crime. IUBMB Life 48(2):157–161

    Article  Google Scholar 

  98. Carlioz A, Touati D (1986) Isolation of superoxide-dismutase mutants in Escherichia coli – Is superoxide-dismutase necessary for aerobic life. EMBO J 5(3):623–630

    CAS  Google Scholar 

  99. Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21(10):4631–4641

    Article  CAS  Google Scholar 

  100. Kiwi J, Nadtochenko V (2004) New evidence for TiO2 photocatalysis during bilayer lipid peroxidation. J Phys Chem B 108(45):17675–17684

    Article  CAS  Google Scholar 

  101. Maness P et al (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    CAS  Google Scholar 

  102. Nadtochenko VA et al (2005) Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy. J Photochem Photobiol A Chem 169(2):131–137

    Article  CAS  Google Scholar 

  103. Porter N, Caldwell S, Mills K (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30(4):277–290

    Article  CAS  Google Scholar 

  104. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  Google Scholar 

  105. Jiang Z-Y, Woollard A, Wolff S (1991) Lipid hydroperoxide measurement by oxidation of Fe2 + in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 26(10):853–856

    Article  CAS  Google Scholar 

  106. Barber DJW, Thomas JK (1978) Reactions of radicals with lecithin bilayers. Radiat Res 74(1):51–65

    Article  CAS  Google Scholar 

  107. Joseph JM, Aravindakumar CT (2000) Determination of rate constants for the reaction of hydroxyl radicals with some purines and pyrimidines using sunlight. J Biochem Biophys Methods 42(3):115–124

    Article  CAS  Google Scholar 

  108. Buxton GV et al (1988) Critical review of rate constants for reactions of hydrated electron, hydrogen atom and hydroxyl radicals (OH/O−) in aqueous solution. J Phys Chem Ref Data 17:513–817

    Article  CAS  Google Scholar 

  109. Minero C et al (2000) Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system. Langmuir 16(23):8964–8972

    Article  CAS  Google Scholar 

  110. Calza P, Pelizzetti E (2001) Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl Chem 73(12):1839–1848

    Article  CAS  Google Scholar 

  111. Chen HY, Zahraa O, Bouchy M (1997) Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J Photochem Photobiol A Chem 108(1):37–44

    Article  CAS  Google Scholar 

  112. Guillard C et al (2005) Why inorganic salts decrease the TiO2 photocatalytic efficiency. Int J Photoenergy 7(1):1–9

    Article  CAS  Google Scholar 

  113. Abdullah M, Low GKC, Matthews RW (1990) Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J Phys Chem 94(17):6820–6825

    Article  CAS  Google Scholar 

  114. McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  115. Dzombak DA, Morel F (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York

    Google Scholar 

  116. Ku Y, Lee W-H, Wang W-Y (2004) Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. J Mol Catal A Chem 212(1–2):191–196

    Article  CAS  Google Scholar 

  117. Hug SJ, Sulzberger B (1994) In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10(10):3587–3597

    Article  CAS  Google Scholar 

  118. Connor PA, McQuillan AJ (1999) Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir 15(8):2916–2921

    Article  CAS  Google Scholar 

  119. Kochany J, Lipczynska-Kochany E (1992) Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2. Chemosphere 25(12):1769–1782

    Article  CAS  Google Scholar 

  120. Matthews RW, Mahlman HA, Sworski TJ (1972) Elementary processes in the radiolysis of aqueous sulfuric acid solutions. Determinations of both GOH and GSO4. J Phys Chem 76(9):1265–1272

    Article  CAS  Google Scholar 

  121. Chang CY et al (2007) Formation and calculation of hydroxyl radical in the optimal photocatalytic process using the Taguchi method. Environ Informatics 5:655–663

    Google Scholar 

  122. Tejero I et al (2007) Theoretical modeling of hydroxyl-radical-induced lipid peroxidation reactions. J Phys Chem B 111(20):5684–5693

    Article  CAS  Google Scholar 

  123. Cubillos MA, Lissi EA, Abuin EB (2000) Kinetics of lipid peroxidation in compartmentalized systems initiated by a water-soluble free radical source. Chem Phys Lipids 104(1):49–56

    Article  CAS  Google Scholar 

  124. Wagner BA, Buettner GR, Burns CP (2002) Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33(15):4449–4453

    Article  Google Scholar 

  125. Li Q-T, Yeo MH, Tan BK (2000) Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources. Biochem Biophys Res Commun 273(1):72–76

    Article  CAS  Google Scholar 

  126. McLoughlin OA et al (2004) Photocatalytic disinfection of water using low cost compound parabolic collectors. Sol Energy 77(5):625–633

    Article  CAS  Google Scholar 

  127. Rincon AG, Pulgarin C (2003) Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl Catal B Environ 44(3):263–284

    Article  CAS  Google Scholar 

  128. Pal A et al (2007) Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. J Photochem Photobiol A Chem 186(2–3):335–341

    Article  CAS  Google Scholar 

  129. Horie Y et al (1996) Effects of light intensity and titanium dioxide concentration on photocatalytic sterilization rates of microbial cells. Ind Eng Chem Res 35(11):3920–3926

    Article  CAS  Google Scholar 

  130. Kaneko M, Kaneko M, Okura I (eds) (2002) Photocatalysis: science and technology. Biological and Medical Physics Series, ed. Greenbaum E. Springer, New York, p. 356

    Google Scholar 

  131. Turchi CS (1991) Effect of light intensity on photocatalytic reaction. In: Potential applications of concentrated solar energy: proceedings of a workshop. Commission on Engineering and Technical Systems (CETS), Washington, DC

    Google Scholar 

  132. Egerton TA, King CJ (1979) Influence of light intensity on photoactivity in titanium dioxide pigmented systems. J Oil Col Chem Assoc 62(10):386–391

    CAS  Google Scholar 

  133. Coleman HM et al (2005) Photocatalytic degradation of 17[beta]-oestradiol, oestriol and 17[alpha]-ethynyloestradiol in water monitored using fluorescence spectroscopy. Appl Catal B Environ 55(1):23–30

    Article  CAS  Google Scholar 

  134. Block SS, Seng VP, Goswami DW (1997) Chemically enhanced sunlight for killing bacteria. J Sol Energy Eng 119(1):85–91

    Article  CAS  Google Scholar 

  135. Parra S, Olivero J, Pulgarin C (2002) Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl Catal B Environ 36(1):75–84

    Article  CAS  Google Scholar 

  136. Corradini MG, Normand MD, Peleg M (2010) Stochastic and deterministic model of microbial heat inactivation. J Food Sci 75(2):R59–R70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yogi Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Dalrymple, O.K., Goswami, D.Y. (2017). Mechanistic Modeling of Photocatalytic Water Disinfection. In: An, T., Zhao, H., Wong, P. (eds) Advances in Photocatalytic Disinfection. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53496-0_13

Download citation

Publish with us

Policies and ethics