Skip to main content

Kurzzeitunterstützung (Akuttherapie)

  • Chapter
  • First Online:
  • 3768 Accesses

Zusammenfassung

Die Indikationsstellung zur indirekten Herzunterstützungstherapie durch eine intraaortale Ballonpumpe ist aktuell Gegenstand kontroverser Diskussionen. Auch der Einsatzbereich direkter Herzunterstützung durch intravasale Pumpen wie das Impella®-System befindet sich im Wandel. Insbesondere an der Schwelle zur Herzersatztherapie durch ECLS-Systeme sowie in Kombination mit diesen zum Zwecke der Verbeugung einer Linksherzdilatation bei Aortenklappeninsuffizienz oder inkompletter venöser Drainage ergeben sich vielfältige Indikationsoptionen. Eine weitere stark expandierende Entwicklung ist im Bereich der miniaturisierten ECLS-Notfall- und -Transportsysteme zu verzeichnen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

Literatur zu 3.1

  • Ahmad Y, Sen S, Shun-Shin MJ, Ouyang J, Finegold JA, et al. (2015) Intra-aortic balloon pump therapy for acute myocardial infarction. A meta-analysis. JAMA Intern Med 175: 931–939

    Article  PubMed  Google Scholar 

  • Briguori C, Sarais C, Pagnotta P, Airoldi F, Liistro F, et al. (2003) Elective versus provisional intra-aortic balloon pumping in high-risk percutanous transluminal coronary angioplasty. Am Heart J 145: 700–707

    Article  PubMed  Google Scholar 

  • Christenson JT, Simonet F, Badel P, Schmuziger M (1999) Optimal timing of preoperative intraaortic balloon pump support in high-risk coronary patients. Ann Thorac Surg 68: 934–939

    Article  CAS  PubMed  Google Scholar 

  • Collison SP, Dagar KS (2007) The role of intra-aortic balloon pump in supporting children with acute cardiac failure. Postgrad Med J 83: 308–311

    Article  PubMed Central  Google Scholar 

  • Craver JM, Murrah CP (2001) Elective intraaortic balloon counterpulsation for high-risk off-pump coronary artery bypass operations. Ann Thorac Surg 71: 1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Ding WJ, Ji Q, Wei Q, Shi YQ, Ma RH, et al. (2015) Prophylactic application of an intra-aortic balloon pump in high-risk patients undergoing off-pump coronary artery bypass grafting. Cardiology 131: 109–115

    Article  PubMed  Google Scholar 

  • Erdogan HB, Goksedef D, Erentug V, et al. (2006) In which patients should sheathless IABP be used? An analysis of vascular complications in 1211 cases. J Cardiovasc Surg 21: 342–346

    Google Scholar 

  • Ferguson JJ 3rd, Cohen M, Freedman RJ Jr, et al. (2001) The current practice of intra-aortic balloon counterpulsation: Results from the Benchmark Registry. J Am Coll Cardiol 38: 1456–1462

    Article  PubMed  Google Scholar 

  • Fuchs RM, Brin KP, Brinker JA, Guzman PA, Heuser RR, Yin FC (1983) Augmentation of coronary blood flow by intraaortic balloon counterpulsation in patients with unstable angina. Circulation 68: 117–123

    Article  CAS  PubMed  Google Scholar 

  • Harken DE (1976) Counterpulsation. Med Instrum 10: 215

    CAS  PubMed  Google Scholar 

  • Hochman JS, Boland J, Sleeper LA, Porway M, Brinker J, et al. for SHOCK Registry Investigators (1995) Current spectrum of cardiogenic shock and effect of early revascularization on mortality. Results of an international registry. Circulation 91: 873–881

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, et al. (2015) Prophylactic intra-aortic balloon pump before ventricular assist device implantation reduces perioperative medical expenses and improves postoperative clinical course in INTERMACS profile 2 patients. Circ J 79: 1963–1969

    Article  PubMed  Google Scholar 

  • Kantrowitz A (1953) Experimental augmentation of coronary flow by retardation of the arterial pressure pulse. Surgery 34: 678–687

    CAS  PubMed  Google Scholar 

  • Kantrowitz A, Tjonneland S, Freed PS, et al. (1968) Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA 203: 113–118

    Article  CAS  PubMed  Google Scholar 

  • Lindsay AC, Khaghani A, Dalby MCD (2009) Intra-aortic balloon and other counterpulsation techniques In: ISHLT Monograph Series 3, Advanced Heart Failure, Elsevier, Philadelphia London, Toronto Montreal Sydney Tokyo, pp 557–568

    Google Scholar 

  • Marcu CB, Donohue TJ, Ferneini A, Ghantous AE (2006) Intraaortic balloon pump insertion through the subclavian artery. Subclavian artery insertion of IABP. Heart Lung Circ 15: 148–150

    Article  PubMed  Google Scholar 

  • Moulopoulos SD, Topaz S, Kolff WJ (1962) Diastolic balloon pumping (with carbon dioxide) in the aorta- a mechanical assistance to the failing circulation. Am Heart J 63: 669–675

    Article  CAS  PubMed  Google Scholar 

  • Ntalianis A, Kapelios CJ, Kanakakis J, Repasos E, Pantsios C, et al. (2015) Prolonged intra-aortic balloon pump support in biventricular heart failure induces right ventricular reverse remodelling. Int J Cardiol 192: 3–8

    Article  PubMed  Google Scholar 

  • Ohman EM, Califf RM, George BS, Quigley PJ, Kereiakes DJ, et al. for the Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group (1991) The use of intraaortic balloon pumping as an adjunct to reperfusion therapy in acute myocardial infarction. Am Heart J 121(3Pt1): 895–901

    Article  CAS  PubMed  Google Scholar 

  • Onorati F, Impiombato B, Ferraro A, Comi MC, Spaccarotella C, et al. (2007) Transbrachial intraaortic balloon pumping in severe peripheral atherosclerosis. Ann Thorac Surg 84: 264–266

    Article  PubMed  Google Scholar 

  • Pilarczyk K, Bauer A, Boening A, von der Brelie M, Eichler I, et al. (2015) S3-Leitlinie “Einsatz der intraaortalen Ballongegenpulsationin der Herzchirurgie” unter Federführung der Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie. Thorac Cardiovasc Surg 63: 131–196

    Article  Google Scholar 

  • Poirier Y, Voisine P, Plourde G, Rimac G, Perez AB, et al. (2016) Efficacy and safety of preoperative intra-aortic balloon pump use in patients undergoing cardiac surgery: a systematic review and meta-analysis. Int J Cardiol 207: 67–79

    Article  PubMed  Google Scholar 

  • Santini F, Mazzucco A (1997) Transthoracic intraaortic counterpulsation: A simple method for ballon catheter positioning. Ann Thorac Surg 64: 859–860

    Article  CAS  PubMed  Google Scholar 

  • Sintek MA, Gdowski M, Lindman BR, Nassif M, Lavine KJ, et al. (2015) Intra-aortic balloon counterpulsation in patients with chronic heart failure and cardiogenic shock: Clinical response and predictors of stabilization. J Cardiac Fail 21: 868–876

    Article  Google Scholar 

  • Stone G, Marsalese D, Brodie B, Griffin J, Donohue B, et al. (1995a) The routine of intra aortic balloon after primary PTCA improves clinical outcomes in very high-risk patients with acute myocardial infarction: Results of the PAMI-2 Trial (abstract). Circulation 92: 139

    Article  Google Scholar 

  • Stone G, Marsalese D, Brodie B, Griffin J, Donohue B, et al. (1995b) Is prophylactic IABP use beneficial or harmful in a high risk elderly population with acute myocardial infarction? Results of the PAMI-2 trial (abstract). Circulation 92(I): 139

    Google Scholar 

  • Su D, Yan B, Guo L, Peng L, Wang X, et al. (2015) Intra-aortic balloon pump may grant no benefit to improve the mortality of patients with acute myocardial infarction in short and long term. Medicine (Baltimore) 94: e876

    Article  Google Scholar 

  • Tanaka A, Tuladhar SM, Onsager D, Asfaw Z, Ota T, et al. (2015) The subclavian intraaortic balloon pump: A compelling bridge device for advanced heart failure. Ann Thorac Surg 100: 2151–2158

    Article  PubMed  Google Scholar 

  • Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, et al. (2012) Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 382: 1638–1645

    Article  Google Scholar 

  • Unverzagt S, Buerke M, de Waha A, Haerting J, Pietzner D, et al. (2015) Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock (Review). Cochrane Database of Systematic Reviews, Issue 3. Art.No.: CD007398. doi: 10.1002/14651858. CD007398.pub3

  • Van Nunen LX, Noc M, Kapur NK, Patel MR, Perera D, et al. (2016) Usefulness of intra-aortic balloon pump counterpulsation. Am J Cardiol 117: 469–476

    Article  PubMed  Google Scholar 

  • Wan YD, Sun TW, Kan QC, Guan FX, Liu ZQ, et al. (2016) The effects of intra-aortic balloon pumps on mortality in patients undergoing high-risk coronary revascularization: A meta-analysis of randomized controlled trials of coronary artery bypass grafting and stenting era. PLoS ONE 11(1): e0147291. doi:10.1371/journal.pone.0147291

    Article  PubMed  PubMed Central  Google Scholar 

Zu 3.2

  • Alasnag MA, Gardi DO, Elder M, Kannam H, Ali F, Petrina M, Kheterpal V, Hout MS, Schreiber TL (2011) Use of the Impella 2.5 for prophylactic circulatory support during elective high-risk percutaneous coronary intervention. Cardiovasc Revasc Med 12: 299–303

    Article  PubMed  Google Scholar 

  • Alli OO, Singh IM, Holmes DR, Jr., Pulido JN, Park SJ, Rihal CS (2012) Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: The mayo clinic experience. Catheter Cardiovasc Interv 80: 728–734

    Article  PubMed  Google Scholar 

  • Amico A, Brigiani MS, Vallabini A, Ferrante B, Marzovillo A, Loizzi D, Carbone C (2008) PulseCath, a new short-term ventricular assist device: our experience in off-pump coronary artery bypass graft surgery. J Cardiovasc Med (Hagerstown) 9: 423–426

    Article  Google Scholar 

  • Anastasiadis K, Chalvatzoulis O, Antonitsis P, Tossios P, Papakonstantinou C (2011) Left ventricular decompression during peripheral extracorporeal membrane oxygenation support with the use of the novel iVAC pulsatile paracorporeal assist device. Ann Thorac Surg 92: 2257–2259

    Article  PubMed  Google Scholar 

  • Basra SS, Loyalka P, Kar B (2011) Current status of percutaneous ventricular assist devices for cardiogenic shock. Curr Opin Cardiol 26: 548–554

    Article  PubMed  Google Scholar 

  • Blumenstein J, de Waha S, Thiele H (2016) Percutaneous ventricular assist devices and extracorporeal life support: current applications. EuroIntervention 12 (Suppl X): X61-X67. doi: 10.4244/EIJV12SXA12

    Article  PubMed  Google Scholar 

  • Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW (2006) A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 152: 469.e1–8

    Article  Google Scholar 

  • Dixon SR, Henriques JP, Mauri L, Sjauw K, Civitello A, Kar B, Loyalka P, Resnic FS, Teirstein P, Makkar R, Palacios IF, Collins M, Moses J, Benali K, O’Neill WW (2009) A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (The PROTECT I Trial): initial U.S. experience. JACC Cardiovasc Interv 2: 91–96

    Article  PubMed  Google Scholar 

  • Froesch P, Martinelli M, Meier P, Cook S, Hullin R, Windecker S, Mohacsi P, Meier B (2011) Clinical use of temporary percutaneous left ventricular assist devices. Catheter Cardiovasc Interv 78: 304–313

    Article  PubMed  Google Scholar 

  • Higgins J, Lamarche Y, Kaan A, Stevens LM, Cheung A (2011) Microaxial devices for ventricular failure: a multicentre, population-based experience. Can J Cardiol 27: 725–730

    Article  PubMed  Google Scholar 

  • Kovacic JC, Nguyen HT, Karajgikar R, Sharma SK, Kini AS (2013) The impella recover 2.5 and TandemHeart ventricular assist devices are safe and associated with equivalent clinical outcomes in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv 82: E28–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Maini B, Naidu SS, Mulukutla S, Kleiman N, Schreiber T, Wohns D, Dixon S, Rihal C, Dave R, O’Neill W (2012) Real-world use of the impella 2.5 circulatory support system in complex high-risk percutaneous coronary intervention: The USpella registry. Catheter Cardiovasc Interv 80: 717–725

    Article  PubMed  Google Scholar 

  • Samuels LE, Kaufman MS, Thomas MP, Holmes EC, Brockman SK, Wechsler AS (1999) Pharmacological criteria for ventricular assist device insertion following postcardiotomy shock: experience with the Abiomed BVS system. J Card Surg 14: 288–293

    Article  CAS  PubMed  Google Scholar 

  • Schibilsky D, Lausberg H, Haller C, Lenglinger M, Woernle B, Haeberle H, Rosenberger P, Walker T, Schlensak C (2015) Impella 5.0 Support in INTERMACS II Cardiogenic Shock Patients Using Right and Left Axillary Artery Access. Artif Organs 39): 660–663. doi: 10.1111/aor.12529

    Article  PubMed  Google Scholar 

  • Schwartz BG, Ludeman DJ, Mayeda GS, Kloner RA, Economides C, Burstein S (2011) High-risk percutaneous coronary intervention with the TandemHeart and Impella devices: a single-center experience. J Invasive Cardiol 23: 417–424

    PubMed  Google Scholar 

  • Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, Dirschinger J, Kastrati A, Schomig A (2008) A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 52: 1584–1588

    Article  PubMed  Google Scholar 

  • Siegenthaler MP, Brehm K, Strecker T, Hanke T, Notzold A, Olschewski M, Weyand M, Sievers H, Beyersdorf F (2004) The Impella Recover microaxial left ventricular assist device reduces mortality for postcardiotomy failure: a three-center experience. J Thorac Cardiovasc Surg 127: 812–822

    Article  CAS  PubMed  Google Scholar 

  • Spratt JR, Raveendran G, Liao K, John R (2016) Novel percutaneous mechanical circulatory support devices and their expanding applications. Expert Rev Cardiovasc Ther 2016 Jul 22 (Epub ahead of print)

    Google Scholar 

  • Tempelhof MW, Klein L, Cotts WG, Benzuly KH, Davidson CJ, Meyers SN, McCarthy PM, Malaisrie CS, McGee EC, Beohar N (2011) Clinical experience and patient outcomes associated with the TandemHeart percutaneous transseptal assist device among a heterogeneous patient population. ASAIO J 57: 254–261

    Article  PubMed  Google Scholar 

  • Thiele H, Lauer B, Hambrecht R, Boudriot E, Cohen HA, Schuler G (2001) Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation 104: 2917–2922

    Article  CAS  PubMed  Google Scholar 

Zu 3.3

  • Akay MH, Gregoric ID, Radovancevic R, et al. (2011) Timely use of Centrimag heart assist device improves survival in postcardiotomy cardiogenic shock. J Card Surg 26: 548–552

    Article  PubMed  Google Scholar 

  • Alba AC, Rao V, Ivanov J, et al. (2009) Usefulness of the INTERMACS Scale to Predict Outcomes After Mechanical Assist Device Implantation. J Heart Lung Transplant 28: 827–833

    Article  PubMed  Google Scholar 

  • Barge-Caballero EB, Segovia-Cubero J, Almenar-Bonwr L, et al. (2013) Preoperative INTERMACS Profiles Determine Postoperative Outcomes in Critically Ill Patients Undergoing Emergency Heart Transplantation - Analysis of the Spanish National Heart Transplant Registry. Circ Heart Fail 6: 763–772

    Article  PubMed  Google Scholar 

  • Bhama JK, Kormos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP (2009) Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant 28: 971–976

    Article  PubMed  Google Scholar 

  • Borisenko O, Wylie G, Payne J, et al. (2014) Thoratec CentriMag for Temporary Treatment of Refractory Cardiogenic Shock or Severe Cardiopulmonary Insufficiency: A Systematic Literature Review and Meta-Analysis of Observational Studies. ASAIO J 60: 487–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle AJ, Ascheim DD, Russo MJ, et al. (2011) Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant 30: 402–407

    Article  PubMed  Google Scholar 

  • De Robertis F, Rogers P, Amrani M, et al. (2008) Bridge to decision using the Levitronix Centrimag short-term ventricular assist device. J Heart Lung Transplant 27: 474–478

    Article  PubMed  Google Scholar 

  • Extracorporeal Llife Support Organization (ed) (2013) ELSO Guidelines for Adult Cardiac Failure. www.elso.org/Portals/0/IGD/Archive/FileManager/e76ef78eabcusersshyerdocumentselsoguidelinesforadultcardiacfailure1.3.pdf

  • Haj-Yahia S, Birks EJ, Amrani M, et al. (2009) Bridging patients after salvage from from bridge to decision directly to transplant by means of prolonged support with the Centrimag short-term centrifugal pump. J Thorac Cardiovasc Surg 138: 227–230

    Article  PubMed  Google Scholar 

  • John R, Liao K, Lietz K, et al. (2007) Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg 134: 351–358

    Article  PubMed  Google Scholar 

  • John R, Long JW, Massey HT, et al. (2011) Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg 141: 932–939

    Article  PubMed  Google Scholar 

  • Kaliel F, Al Habeeb W, Saad E, et al. (2014) Use of Rotaflow pump for left ventricular assist device bridging for 15 weeks. Asian Cardiovasc Thorac Ann 22: 205–207

    Article  Google Scholar 

  • Kapur KK, Paruchuri V, Jagannathan A, et al. (2013) Mechanical Circulatory Support for Right Ventricular Failure. J Am Coll Cardiol HF 1: 127–134

    Google Scholar 

  • Loforte A, Montalto A, Ranocchi F, et al. (2011) Levitronix Centrimag third-generation magnetically levitated continuous flow pump as bridge to solution. ASAIO J 57: 247–253

    Article  PubMed  Google Scholar 

  • Netuka I, Malý J, Szarszoi O, et al. (2011) Technique of implantation and experience with temporary mechanical cardiac support in right ventricular failure. Rozhl Chir 90: 88–94

    CAS  PubMed  Google Scholar 

  • Saffarzadeh A, Bonde P (2015) Options for temporary mechanical circulatory support. J Thorac Dis 7: 2102–2111

    PubMed  PubMed Central  Google Scholar 

  • Stevenson LW, Pagani FD, Young JB, et al. (2009) INTERMACS Profiles of Advanced Heart Failure: The Current Picture J Heart Lung Transplant 28: 535–541

    Article  PubMed  Google Scholar 

  • Takayama H, Soni L, Kalesan B, et al. (2014) Bridge-to-decision therapy with a conituous-flow external ventricular assist device in refractory cardiogenic shockof various causes. Circ Heart Fail 7: 799–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas HL, Dronavalli VB, Parameshwar J, et al. (2011) Incidence and outcome of Levitronix CentriMag support as rescue therapy for early cardiac allograft failure: A United Kingdom national study. Eur J Cardiothorac Surg 40: 1348–1354

    PubMed  Google Scholar 

  • Zych B, Popov AF, Barsan A, et al. (2011) Treatment of refractory right heart failure after implantation of a left ventricular assist device. Is the levitronix centrimag right heart support a solution? Heart 97: A49

    Article  Google Scholar 

Zu 3.4

  • Arlt M, Philipp A, Zimmermann M, Voelkel S, Amann M, et al. (2009) Emergency Use of Extracorporeal Membrane Oxygenation in Cardiopulmonary Failure. Artifi Org 33: 696–703

    Article  Google Scholar 

  • Arlt M, Philipp A, Voelkel S, Camboni D, Rupprecht L, et al. (2011a) Hand-held minimised extracorporeal membrane oxygenation: a new bridge to recovery in patients with out-of-centre cardiogenic shock. Eur J Cardiothorac Surg 40: 689–694

    PubMed  Google Scholar 

  • Arlt M, Philipp A, Voelkel S, Graf BM, Schmid C, Hilker M (2011b) Out-of-hospital extracorporeal life support for cardiac arrest-A case report. Resuscitation 82: 1243–1245

    Article  CAS  PubMed  Google Scholar 

  • Beurtheret S, Mordant P, Paoletti X, Marijon E, Celermajer DS, et al. (2012) Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program), Eur Heart J 34: 112–120

    Article  PubMed  Google Scholar 

  • Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, et al. (2008a) Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372: 554–561

    Article  PubMed  Google Scholar 

  • Chen YS, Yu HY, Huang SC, Lin JW, et al. (2008b) Extracorporeal membrane oxygenation support can extend the duration of cardiopulmonary resuscitation. Crit Care Med 36: 2529–2535

    Article  PubMed  Google Scholar 

  • Cheng R (2015) Lack of Survival Benefit Found With Use of Intraaortic Balloon Pump in Extracorporeal Membrane Oxygenation: A Pooled Experience of 1517 Patients. J Invasive Cardiol 27: 453–458

    PubMed  Google Scholar 

  • Combes A, Leprince P, Luyt CE, Bonnet N, Trouillet JL, et al. (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock: Crit Care Med 36: 1404–1411

    Article  PubMed  Google Scholar 

  • Le Guen M, Nicolas-Robin A, Carreira S, Raux M, Leprince P, et al. (2011) Extracorporeal life support following out-of-hospital refractory cardiac arrest, Critical Care 15: R29

    Article  PubMed  PubMed Central  Google Scholar 

  • Lina JW, Wang MJ, Yu HY, Wang CH, Chang WT, et al. (2010) Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: Propensity analysis of three-year data. Resuscitation 81: 796–803

    Article  Google Scholar 

  • Massetti M, Tasle M, Le Page O, Deredec R, Babatasi G, et al. (2005) Back from Irreversibility: Extracorporeal Life Support for Prolonged Cardiac Arrest. Ann Thorac Surg 79: 178–183

    Article  PubMed  Google Scholar 

  • Peek GJ (2011) Community extracorporeal life support for cardiac arrest – When should it be used? Resuscitation 82: 1117 editorial

    Article  PubMed  Google Scholar 

  • Ranucci M, Ballotta A, Kandil H, Isgrò G, Carlucci C, et al. for the Surgical and Clinical Outcome Research Group (2011) Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Critical Care 15: R275

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiagarajan RR, Brogan TV, Scheurer MA, Laussen PC, Rycus PT, Bratton SL (2009) Extracorporeal Membrane Oxygenation to Support Cardiopulmonary Resuscitation in Adults. Ann Thorac Surg 87: 778–85

    Article  PubMed  Google Scholar 

Zu 3.5

  • Bartlett R, Gattinoni L (2010) Current status of extracorporeal life support (ECMO) for cardiopulmonary failure. Minerva Anestesiol 76: 534–540

    CAS  PubMed  Google Scholar 

  • Berdajs D, Born F, Crosset M et al (2010) Superior venous drainage in the „Life Box“: a portable extracorporeal oxygenator with a self-expanding venous cannula. Perfusion 25: 211–215

    Article  PubMed  Google Scholar 

  • Bisdas T, Beutel G, Warnecke G et al (2011) Vascular complications in patients undergoing femoral cannulation for extracorporeal membrane oxygenation support. Ann Thorac Surg 92: 626–631

    Article  PubMed  Google Scholar 

  • Born F, Ammann U, Burren T, Albrecht R, et al. (2010) Transatlantikflug mit transportabler Herz-Lungen-Maschine „LifeBox“, Kardiotechnik 3: 65–69

    Google Scholar 

  • Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, Chen WJ, Huang SC, Chi NH, Wang CH, et al. (2008) Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372: 554–561

    Article  PubMed  Google Scholar 

  • Coppola CP, Tyreeb M, Larryb K, Di Geronimob R (2008) A 22-year experience in global transport extracorporeal membrane oxygenation. J Ped Surg 43, 46–52

    Article  Google Scholar 

  • EASA (ed) www.easa.europa.eu

  • Extracorporeal Life Support Organization (ed) http://www.elso.med.umich.edu/(Zugriff 05.10.2016)

  • Güngerich A, (2010) Ein Herz will weiterschlagen. 1414 Gönnermagazin der Schweizerischen Rettungsflugwacht 74: 12–13

    Google Scholar 

  • Nichol G, Thomas E, Callaway CW et al (2008) Regional Variation in Out-of-Hospital Cardiac Arrest Incidence and Outcome, Jama 300: 1423–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid C, Philipp A, Müller T, Hilker M (2009) Extracorporeal Life Support Systems, Indications and Limitations. Thorac Cardiovasc Surg 57: 449–454

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tandler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 © Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Tandler, R. et al. (2017). Kurzzeitunterstützung (Akuttherapie). In: Boeken, U., Assmann, A., Born, F., Klotz, S., Schmid, C. (eds) Mechanische Herz-Kreislauf-Unterstützung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53490-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53490-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53489-2

  • Online ISBN: 978-3-662-53490-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics