Advertisement

Enhanced Light Harvesting in Plasmonic Dye-Sensitized Solar Cells Using Gold Topological Light Trapping Layer

  • Nailiang YangEmail author
Chapter
  • 528 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Dye-sensitized solar cells (DSSCs) are promising low-cost, high-efficiency devices with low environmental impact. One of the important methods to improve their efficiencies involves increasing the light-harvesting efficiency. Earlier work has focused on varying the morphology of the photoanode. With such a hierarchical structured photoanode in hand, we modify herein the structure of the counter electrode to enhance the optical path length through the plasmonic and reflecttion effects. With the introduced topological gold layer, the photocurrent and efficiency are increased by 16 and 18 %, respectively, due to the increased light collection. Besides, this effect is effective at both high and low levels of solar irradiation.

Keywords

Sodium Dodecylbenzenesulfonate Optical Path Length Gold Layer Light Collection Photoelectrical Conversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O’Regan, B., Grätzel, M.: Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Grätzel, M.: J. Am. Chem. Soc. 127, 16835 (2005)CrossRefGoogle Scholar
  3. 3.
    Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Jpn. J. Appl. Phys. 45, L638 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhao, Y., Sheng, X., Zhai, J., Jiang, L., Yang, C., Sun, Z., Li, Y., Zhu, D.: ChemPhysChem 8, 856 (2007)CrossRefGoogle Scholar
  5. 5.
    Zhao, Y., Zhai, J., Wei, T., Jiang, L., Zhu, D.: J. Mater. Chem. 17, 5084 (2007)CrossRefGoogle Scholar
  6. 6.
    Nishimura, S., Abrams, N., Lewis, B.A., Halaoui, L.I., Mallouk, T.E., Benkstein, K.D., van de Lagemaat, J., Frank, A.J.: J. Am. Chem. Soc. 125, 6306 (2003)CrossRefGoogle Scholar
  7. 7.
    Tebby, Z., Babot, O., Michau, D., Hirsch, L., Carlos, L., Toupance, T.: J. Photochem. Photobiol. A-Chem. 205, 70 (2009)CrossRefGoogle Scholar
  8. 8.
    Tebby, Z., Uddin, T., Nicolas, Y., Olivier, C. l., Toupance, T., Labrugère, C., Hirsch, L.: ACS Appl. Mater. Interfaces 3, 1485 (2011)Google Scholar
  9. 9.
    Hore, S., Nitz, P., Vetter, C., Prahl, C., Niggemann, M., Kern, R.: Chem. Commun. 2011 (2005)Google Scholar
  10. 10.
    Nusbaumer, H., Zakeeruddin, S.M., Moser, J.E., Grätzel, M.: Chem. Eur. J. 9, 3756 (2003)CrossRefGoogle Scholar
  11. 11.
    Vargas, W.E., Niklasson, G.A.: Sol. Energy Mater. Sol. Cells 69, 147 (2001)CrossRefGoogle Scholar
  12. 12.
    Zhao, Y., Zhai, J., Tan, S., Wang, L., Jiang, L., Zhu, D.: Nanotechnology 17, 2090 (2006)CrossRefGoogle Scholar
  13. 13.
    Brown, M.D., Suteewong, T., Kumar, R.S.S., D’Innocenzo, V., Petrozza, A., Lee, M.M., Wiesner, U., Snaith, H.J.: Nano Lett. 11, 438 (2010)CrossRefGoogle Scholar
  14. 14.
    Crossland, E.J.W., Kamperman, M., Nedelcu, M., Ducati, C., Wiesner, U., Smilgies, D.M., Toombes, G.E.S., Hillmyer, M.A., Ludwigs, S., Steiner, U., Snaith, H.J.: Nano Lett. 9, 2807 (2008)CrossRefGoogle Scholar
  15. 15.
    Crossland, E.J.W., Nedelcu, M., Ducati, C., Ludwigs, S., Hillmyer, M.A., Steiner, U., Snaith, H.J.: Nano Lett. 9, 2813 (2008)CrossRefGoogle Scholar
  16. 16.
    Liu, C.-J., Burghaus, U., Besenbacher, F., Wang, Z.: ACS Nano 4, 5517 (2010)CrossRefGoogle Scholar
  17. 17.
    Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  18. 18.
    Homola, J.: Anal. Bioanal. Chem. 377, 528 (2003)CrossRefGoogle Scholar
  19. 19.
    Qi, Z.-M., Honma, I., Zhou, H.: Opt. Lett. 2006, 31 (1854)Google Scholar
  20. 20.
    El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Nano Lett. 5, 829 (2005)CrossRefGoogle Scholar
  21. 21.
    Schatz, G.C.: Acc. Chem. Res. 17, 370 (1984)CrossRefGoogle Scholar
  22. 22.
    Szamocki, R., Reculusa, S., Ravaine, S., Bartlett, P.N., Kuhn, A., Hempelmann, R.: Angew. Chem. Int. Ed. 45, 1317 (2006)CrossRefGoogle Scholar
  23. 23.
    Sakai, N., Fujiwara, Y., Takahashi, Y., Tatsuma, T.: ChemPhysChem 10, 766 (2009)CrossRefGoogle Scholar
  24. 24.
    Atwater, H.A., Polman, A.: Nat. Mater. 9, 865 (2010)CrossRefGoogle Scholar
  25. 25.
    Wang, J., Wen, Y., Hu, J., Song, Y., Jiang, L.: Adv. Funct. Mater. 17, 219 (2007)CrossRefGoogle Scholar
  26. 26.
    Li, H., Chang, L., Wang, J., Yang, L., Song, Y.: J. Mater. Chem. 18, 5098 (2008)CrossRefGoogle Scholar
  27. 27.
    Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: ACS Nano 4, 887 (2010)CrossRefGoogle Scholar
  28. 28.
    Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N., Grätzel, M.: J. Am. Chem. Soc. 115, 6382 (1993)CrossRefGoogle Scholar
  29. 29.
    Sakai, N., Tatsuma, T.: Adv. Mater. 22, 3185 (2010)CrossRefGoogle Scholar
  30. 30.
    Guo, X.-Z., Luo, Y.-H., Li, C.-H., Qin, D., Li, D.-M., Meng, Q.-B.: Curr. Appl. Phys. 12, e54 (2012)CrossRefGoogle Scholar
  31. 31.
    Wu, J.-L., Chen, F.-C., Hsiao, Y.-S., Chien, F.-C., Chen, P., Kuo, C.-H., Huang, M.H., Hsu, C.-S.: ACS Nano 5, 959 (2011)CrossRefGoogle Scholar
  32. 32.
    Chen, G., Wang, Y., Yang, M., Xu, J., Goh, S.J., Pan, M., Chen, H.: J. Am. Chem. Soc. 132, 3644 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations