Advertisement

Bioinspired Stacking Structures for Photoelectric Conversion

  • Nailiang YangEmail author
Chapter
  • 522 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Part 1. Solar energy is commonly considered to be one of the most important forms of future energy production. This is due to its ability to generate essentially free power, after installation, with low environmental impact. Green plants, meanwhile, exhibit a process for light-to-charge conversion that provides a useful model for using solar radiation efficiently. Granum, the core organ in photosynthesis consists of a stack of ~10–100 thylakoids containing pigments and electrons acceptors. Imitating the structure and function of granum, stacked structures are fabricated with TiO2/graphene nanosheets as the thylakoids unit, and their photo-electric effect is studied by varying the number of layers present in the film. The photo-electric response of the graphene composites are found to be 20 times higher than that of pure TiO2 in films with 25 units stacked. Importantly, the cathodic photocurrent changes to anodic photocurrent as the thickness increases, an important feature of efficient solar cells which is often ignored. Here graphene is proposed to perform similarly to the b6f complex in granum, by separating charges and transporting electrons through the stacked film. Using this innovation, stacked TiO2/graphene structures are now able to significantly increase photoanode thickness in solar cells without losing the ability to conduct electrons. Part 2. Novel layered structures of polyaniline (PANI) doped with graphene oxide (GO) were directly prepared by adding GO aqueous solution into the emeraldine base form of PANI (PANI-EB) dissolved in a mixture solution of m-cresol and ethanol. The method is simple and inexpensive because of saving inorganic or organic acids as the dopant, opening a new way to prepare hybrid materials of PANI with GO. It was proposed that the π–π planar structure of GO and the carboxyl groups on the surface of GO are served as the template and dopant, respectively that results in the formation of the layered structures. The doping function of GO in the PANI-GO has been proved by structural characterizations and conductivity measured by a four-probe method.

Keywords

Solar Cell Graphene Oxide Excited Electron Pure TiO2 Flake Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li, X., Fan, T., Zhou, H., Chow, S.-K., Zhang, W., Zhang, D., Guo, Q., Ogawa, H.: Adv. Funct. Mater. 19, 45 (2009)CrossRefGoogle Scholar
  2. 2.
    Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V., Reich, Z.: Plant Cell 17, 2580 (2005)CrossRefGoogle Scholar
  3. 3.
    Freitag, M.: Nat. Nano. 3, 455 (2008)CrossRefGoogle Scholar
  4. 4.
    Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  5. 5.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)CrossRefGoogle Scholar
  6. 6.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Nature 442, 282 (2006)CrossRefGoogle Scholar
  7. 7.
    Katsnelson, M.I.: Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  8. 8.
    Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., Zhao, Y., Deng, W.-Q., Zhang, H., Liu, X.-W.: Chem. Eur. J. 17, 10832 (2011)CrossRefGoogle Scholar
  9. 9.
    Sakai, N., Ebina, Y., Takada, K., Sasaki, T.: J. Am. Chem. Soc. 126, 5851 (2004)CrossRefGoogle Scholar
  10. 10.
    Sasaki, T., Watanabe, M.: J. Phys. Chem. B 101, 10159 (1997)CrossRefGoogle Scholar
  11. 11.
    Williams, G., Seger, B., Kamat, P.V.: ACS Nano 2, 1487 (2008)CrossRefGoogle Scholar
  12. 12.
    Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: ACS Nano 4, 887 (2010)CrossRefGoogle Scholar
  13. 13.
    Sasaki, T., Ebina, Y., Fukuda, K., Tanaka, T., Harada, M., Watanabe, M.: Chem. Mat. 14, 3524 (2002)CrossRefGoogle Scholar
  14. 14.
    Hummers, W.S., Offeman, R.E.: J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  15. 15.
    Sasaki, T., Watanabe, M.: J. Am. Chem. Soc. 120, 4682 (1998)CrossRefGoogle Scholar
  16. 16.
    Nethravathi, C., Rajamathi, M.: Carbon 2008, 46 (1994)Google Scholar
  17. 17.
    Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: J. Am. Chem. Soc. 128, 7720 (2006)CrossRefGoogle Scholar
  18. 18.
    Xu, Y.X., Bai, H., Lu, G.W., Li, C., Shi, G.Q.: J. Am. Chem. Soc. 130, 5856 (2008)CrossRefGoogle Scholar
  19. 19.
    Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Nano Lett. 7, 3499 (2007)CrossRefGoogle Scholar
  20. 20.
    Nakashima, N., Tomonari, Y., Murakami, H.: Chem. Lett. 31, 638 (2002)CrossRefGoogle Scholar
  21. 21.
    Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X., Welsher, K., Dai, H.J.: J. Am. Chem. Soc. 129, 2448 (2007)CrossRefGoogle Scholar
  22. 22.
    Yao, H.-B., Wu, L.-H., Cui, C.-H., Fang, H.-Y., Yu, S.-H.: J. Mater. Chem. 20, 5190 (2010)CrossRefGoogle Scholar
  23. 23.
    Manga, K.K., Zhou, Y., Yan, Y., Loh, K.P.: Adv. Funct. Mater. 19, 3638 (2009)CrossRefGoogle Scholar
  24. 24.
    Grätzel, M.: Nature 414, 338 (2001)CrossRefGoogle Scholar
  25. 25.
    Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hsiao, Y.H., Ma, C.C.M., Chang, M.C., Shao, H., Tsai, M.C., Hsieh, C.K., Tsai, C.H., Weng, F.B.: Nanotechnology 19, 1 (2008)Google Scholar
  26. 26.
    Kongkanand, A., MartinezDominguez, R., Kamat, P.V.: Nano Lett. 7, 676 (2007)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Zhi, L.J., Mullen, K.: Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
  28. 28.
    Peter, L.M., Wijayantha, K.G.U.: Electrochim. Acta 45, 4543 (2000)CrossRefGoogle Scholar
  29. 29.
    Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  30. 30.
    Liu, C.-J., Burghaus, U., Besenbacher, F., Wang, Z.L.: ACS Nano 4, 5517 (2010)CrossRefGoogle Scholar
  31. 31.
    Oekermann, T., Zhang, D., Yoshida, T., Minoura, H.: J. Phys. Chem. B 108, 2227 (2004)CrossRefGoogle Scholar
  32. 32.
    Archana, P.S., Jose, R., Vijila, C., Ramakrishna, S.: J. Phys. Chem. C 113, 21538 (2009)CrossRefGoogle Scholar
  33. 33.
    Berger, C.: Science 312, 1191 (2006)CrossRefGoogle Scholar
  34. 34.
    Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R.: Handbook of Conducting Polymers. Marcel Dekker, New York (1997); [b] Premamoy, G., Samir, K.S., Amit, C.: Eur. Polym. J. 35, 699 (1999)Google Scholar
  35. 35.
    Wu, T.M., Lin, Y.W., Liao, C.S.: Carbon 43, 734–740 (2005); [b] Wu, T.M., Lin, Y.W.: Polymer 47, 3576 (2006)Google Scholar
  36. 36.
    Zengin, H., Zhou, W.S., Jin, J.Y., Czerw, R., Smith, D.W., Echegoyen, L., Carroll, D.L., Foulger, S.H., Ballato, J.: Adv. Mater. 14, 1480 (2002)Google Scholar
  37. 37.
    Wan, M.X.: In: Li, Q. (ed.), Conducting Polymers with Micro or Nanometer Structure. Tsinghua University Press, Beijing and Springer, Berlin, Heidelberg (2008)Google Scholar
  38. 38.
    Wan, M.X.: Macromol. Rapid Commun. 30, 963–975 (2009)CrossRefGoogle Scholar
  39. 39.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Science 315, 1379 (2007). [b] Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Science 315, 490 (2007). [c] Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Nat. Nano. 3 101 (2008). [d] Gilje, S., Han, S., Wang, M.S., Wang, K.L., Kaner, R.B.: Nano Lett. 7, 3394 (2007)Google Scholar
  40. 40.
    Freitag, M.: Nat. Nano. 3, 455 (2008)CrossRefGoogle Scholar
  41. 41.
    Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Nano Lett. 3, 1379 (2003)CrossRefGoogle Scholar
  42. 42.
    Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: J. Mater. Chem. 16, 155 (2006)CrossRefGoogle Scholar
  43. 43.
    Bai H, Xu YX, Zhao L, Li C, Shi GQ, Chem. Commun. 2009, 1667. [b] Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC, J. Am. Chem. Soc. 2006, 128, 7720. [c] Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc. 2008, 130, 5856Google Scholar
  44. 44.
    Wang, X., Zhi, L., Müllen, K.: Nano Lett. 8, 323 (2008). [b] Liu, Z.F., Liu, Q., Huang, Y., Ma, Y.F., Yin, S.G., Zhang, X.Y., Sun, W., Chen, Y.S.: Adv. Mater. 20, 3924 (2008). [c] Liu, Q., Liu, Z.F., Zhang, X.Y., Yang, L.Y., Zhang, N., Pan, G.L., Yin, S.G., Chen, Y.S., Wei, J.: Adv. Funct. Mater. 19, 894 (2009). [d] Nethravathi, C., Rajamathi, M.: Carbon 46, 1994 (2008)Google Scholar
  45. 45.
    Bissessur, R., Liu, P.K.Y., White, W., Scully, S.F.: Langmuir 22, 1729 (2006). [b] Matsuo, Y., Higashika, S., Kimura, K., Miyamoto, Y., Fukutsuka, T., Sugie, Y.: J. Mater. Chem. 12, 1592 (2002). [c] Wang, H.L., Hao, Q.L., Yang, X.J., Lua, L., Wang, X.: Electrochem. Commun. 11, 1158 (2009)Google Scholar
  46. 46.
    Cassagneau, T., Fendler, J.H., Johnson, S.A,, Mallouk. T.E.: Adv. Mater. 12, 1363 (2000). [b] Cassagneau, T., Guerin, F., Fendler, J.H.: Langmuir 16, 7318 (2000)Google Scholar
  47. 47.
    Huang, W.S., Humphrey, B.D., MacDiarmid, A.G.: J. Chem. Soc. Faraday Trans. 82, 2385 (1986)CrossRefGoogle Scholar
  48. 48.
    Chiang, J.C., MacDiarmid, A.G.: Synth. Met. 13, 193 (1986). [b] MacDiamid, A.G., Chiang, J.C., Richter, A.F., Epstein, A.J. Synth.Met. 18, 285 (1987)Google Scholar
  49. 49.
    Wan, M.X.: J. Polym. Sci. Part A 30, 543 (1992)CrossRefGoogle Scholar
  50. 50.
    Gu, H., Su, X., Loh, K.P.: J. Phys. Chem. B 109, 13611 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations