Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 588 Accesses

Abstract

Part 1. Solar energy is commonly considered to be one of the most important forms of future energy production. This is due to its ability to generate essentially free power, after installation, with low environmental impact. Green plants, meanwhile, exhibit a process for light-to-charge conversion that provides a useful model for using solar radiation efficiently. Granum, the core organ in photosynthesis consists of a stack of ~10–100 thylakoids containing pigments and electrons acceptors. Imitating the structure and function of granum, stacked structures are fabricated with TiO2/graphene nanosheets as the thylakoids unit, and their photo-electric effect is studied by varying the number of layers present in the film. The photo-electric response of the graphene composites are found to be 20 times higher than that of pure TiO2 in films with 25 units stacked. Importantly, the cathodic photocurrent changes to anodic photocurrent as the thickness increases, an important feature of efficient solar cells which is often ignored. Here graphene is proposed to perform similarly to the b6f complex in granum, by separating charges and transporting electrons through the stacked film. Using this innovation, stacked TiO2/graphene structures are now able to significantly increase photoanode thickness in solar cells without losing the ability to conduct electrons. Part 2. Novel layered structures of polyaniline (PANI) doped with graphene oxide (GO) were directly prepared by adding GO aqueous solution into the emeraldine base form of PANI (PANI-EB) dissolved in a mixture solution of m-cresol and ethanol. The method is simple and inexpensive because of saving inorganic or organic acids as the dopant, opening a new way to prepare hybrid materials of PANI with GO. It was proposed that the π–π planar structure of GO and the carboxyl groups on the surface of GO are served as the template and dopant, respectively that results in the formation of the layered structures. The doping function of GO in the PANI-GO has been proved by structural characterizations and conductivity measured by a four-probe method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, X., Fan, T., Zhou, H., Chow, S.-K., Zhang, W., Zhang, D., Guo, Q., Ogawa, H.: Adv. Funct. Mater. 19, 45 (2009)

    Article  Google Scholar 

  2. Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V., Reich, Z.: Plant Cell 17, 2580 (2005)

    Article  CAS  Google Scholar 

  3. Freitag, M.: Nat. Nano. 3, 455 (2008)

    Article  CAS  Google Scholar 

  4. Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  5. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  6. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  7. Katsnelson, M.I.: Mater. Today 10, 20 (2007)

    Article  CAS  Google Scholar 

  8. Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., Zhao, Y., Deng, W.-Q., Zhang, H., Liu, X.-W.: Chem. Eur. J. 17, 10832 (2011)

    Article  CAS  Google Scholar 

  9. Sakai, N., Ebina, Y., Takada, K., Sasaki, T.: J. Am. Chem. Soc. 126, 5851 (2004)

    Article  CAS  Google Scholar 

  10. Sasaki, T., Watanabe, M.: J. Phys. Chem. B 101, 10159 (1997)

    Article  CAS  Google Scholar 

  11. Williams, G., Seger, B., Kamat, P.V.: ACS Nano 2, 1487 (2008)

    Article  CAS  Google Scholar 

  12. Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: ACS Nano 4, 887 (2010)

    Article  CAS  Google Scholar 

  13. Sasaki, T., Ebina, Y., Fukuda, K., Tanaka, T., Harada, M., Watanabe, M.: Chem. Mat. 14, 3524 (2002)

    Article  CAS  Google Scholar 

  14. Hummers, W.S., Offeman, R.E.: J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  15. Sasaki, T., Watanabe, M.: J. Am. Chem. Soc. 120, 4682 (1998)

    Article  CAS  Google Scholar 

  16. Nethravathi, C., Rajamathi, M.: Carbon 2008, 46 (1994)

    Google Scholar 

  17. Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: J. Am. Chem. Soc. 128, 7720 (2006)

    Article  CAS  Google Scholar 

  18. Xu, Y.X., Bai, H., Lu, G.W., Li, C., Shi, G.Q.: J. Am. Chem. Soc. 130, 5856 (2008)

    Article  CAS  Google Scholar 

  19. Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Nano Lett. 7, 3499 (2007)

    Article  CAS  Google Scholar 

  20. Nakashima, N., Tomonari, Y., Murakami, H.: Chem. Lett. 31, 638 (2002)

    Article  Google Scholar 

  21. Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X., Welsher, K., Dai, H.J.: J. Am. Chem. Soc. 129, 2448 (2007)

    Article  CAS  Google Scholar 

  22. Yao, H.-B., Wu, L.-H., Cui, C.-H., Fang, H.-Y., Yu, S.-H.: J. Mater. Chem. 20, 5190 (2010)

    Article  CAS  Google Scholar 

  23. Manga, K.K., Zhou, Y., Yan, Y., Loh, K.P.: Adv. Funct. Mater. 19, 3638 (2009)

    Article  CAS  Google Scholar 

  24. Grätzel, M.: Nature 414, 338 (2001)

    Article  Google Scholar 

  25. Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hsiao, Y.H., Ma, C.C.M., Chang, M.C., Shao, H., Tsai, M.C., Hsieh, C.K., Tsai, C.H., Weng, F.B.: Nanotechnology 19, 1 (2008)

    Google Scholar 

  26. Kongkanand, A., MartinezDominguez, R., Kamat, P.V.: Nano Lett. 7, 676 (2007)

    Article  CAS  Google Scholar 

  27. Wang, X., Zhi, L.J., Mullen, K.: Nano Lett. 8, 323 (2008)

    Article  CAS  Google Scholar 

  28. Peter, L.M., Wijayantha, K.G.U.: Electrochim. Acta 45, 4543 (2000)

    Article  CAS  Google Scholar 

  29. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  30. Liu, C.-J., Burghaus, U., Besenbacher, F., Wang, Z.L.: ACS Nano 4, 5517 (2010)

    Article  CAS  Google Scholar 

  31. Oekermann, T., Zhang, D., Yoshida, T., Minoura, H.: J. Phys. Chem. B 108, 2227 (2004)

    Article  CAS  Google Scholar 

  32. Archana, P.S., Jose, R., Vijila, C., Ramakrishna, S.: J. Phys. Chem. C 113, 21538 (2009)

    Article  CAS  Google Scholar 

  33. Berger, C.: Science 312, 1191 (2006)

    Article  CAS  Google Scholar 

  34. Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R.: Handbook of Conducting Polymers. Marcel Dekker, New York (1997); [b] Premamoy, G., Samir, K.S., Amit, C.: Eur. Polym. J. 35, 699 (1999)

    Google Scholar 

  35. Wu, T.M., Lin, Y.W., Liao, C.S.: Carbon 43, 734–740 (2005); [b] Wu, T.M., Lin, Y.W.: Polymer 47, 3576 (2006)

    Google Scholar 

  36. Zengin, H., Zhou, W.S., Jin, J.Y., Czerw, R., Smith, D.W., Echegoyen, L., Carroll, D.L., Foulger, S.H., Ballato, J.: Adv. Mater. 14, 1480 (2002)

    Google Scholar 

  37. Wan, M.X.: In: Li, Q. (ed.), Conducting Polymers with Micro or Nanometer Structure. Tsinghua University Press, Beijing and Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  38. Wan, M.X.: Macromol. Rapid Commun. 30, 963–975 (2009)

    Article  CAS  Google Scholar 

  39. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Science 315, 1379 (2007). [b] Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Science 315, 490 (2007). [c] Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Nat. Nano. 3 101 (2008). [d] Gilje, S., Han, S., Wang, M.S., Wang, K.L., Kaner, R.B.: Nano Lett. 7, 3394 (2007)

    Google Scholar 

  40. Freitag, M.: Nat. Nano. 3, 455 (2008)

    Article  CAS  Google Scholar 

  41. Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Nano Lett. 3, 1379 (2003)

    Article  CAS  Google Scholar 

  42. Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: J. Mater. Chem. 16, 155 (2006)

    Article  CAS  Google Scholar 

  43. Bai H, Xu YX, Zhao L, Li C, Shi GQ, Chem. Commun. 2009, 1667. [b] Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC, J. Am. Chem. Soc. 2006, 128, 7720. [c] Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc. 2008, 130, 5856

    Google Scholar 

  44. Wang, X., Zhi, L., Müllen, K.: Nano Lett. 8, 323 (2008). [b] Liu, Z.F., Liu, Q., Huang, Y., Ma, Y.F., Yin, S.G., Zhang, X.Y., Sun, W., Chen, Y.S.: Adv. Mater. 20, 3924 (2008). [c] Liu, Q., Liu, Z.F., Zhang, X.Y., Yang, L.Y., Zhang, N., Pan, G.L., Yin, S.G., Chen, Y.S., Wei, J.: Adv. Funct. Mater. 19, 894 (2009). [d] Nethravathi, C., Rajamathi, M.: Carbon 46, 1994 (2008)

    Google Scholar 

  45. Bissessur, R., Liu, P.K.Y., White, W., Scully, S.F.: Langmuir 22, 1729 (2006). [b] Matsuo, Y., Higashika, S., Kimura, K., Miyamoto, Y., Fukutsuka, T., Sugie, Y.: J. Mater. Chem. 12, 1592 (2002). [c] Wang, H.L., Hao, Q.L., Yang, X.J., Lua, L., Wang, X.: Electrochem. Commun. 11, 1158 (2009)

    Google Scholar 

  46. Cassagneau, T., Fendler, J.H., Johnson, S.A,, Mallouk. T.E.: Adv. Mater. 12, 1363 (2000). [b] Cassagneau, T., Guerin, F., Fendler, J.H.: Langmuir 16, 7318 (2000)

    Google Scholar 

  47. Huang, W.S., Humphrey, B.D., MacDiarmid, A.G.: J. Chem. Soc. Faraday Trans. 82, 2385 (1986)

    Article  CAS  Google Scholar 

  48. Chiang, J.C., MacDiarmid, A.G.: Synth. Met. 13, 193 (1986). [b] MacDiamid, A.G., Chiang, J.C., Richter, A.F., Epstein, A.J. Synth.Met. 18, 285 (1987)

    Google Scholar 

  49. Wan, M.X.: J. Polym. Sci. Part A 30, 543 (1992)

    Article  CAS  Google Scholar 

  50. Gu, H., Su, X., Loh, K.P.: J. Phys. Chem. B 109, 13611 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nailiang Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Yang, N. (2017). Bioinspired Stacking Structures for Photoelectric Conversion. In: The Preparation of Nano Composites and Their Applications in Solar Energy Conversion. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53485-4_3

Download citation

Publish with us

Policies and ethics