The Preparation of Nano Composites and Their Applications in Solar Energy Conversion pp 57-79 | Cite as
Bioinspired Stacking Structures for Photoelectric Conversion
- 522 Downloads
Abstract
Part 1. Solar energy is commonly considered to be one of the most important forms of future energy production. This is due to its ability to generate essentially free power, after installation, with low environmental impact. Green plants, meanwhile, exhibit a process for light-to-charge conversion that provides a useful model for using solar radiation efficiently. Granum, the core organ in photosynthesis consists of a stack of ~10–100 thylakoids containing pigments and electrons acceptors. Imitating the structure and function of granum, stacked structures are fabricated with TiO2/graphene nanosheets as the thylakoids unit, and their photo-electric effect is studied by varying the number of layers present in the film. The photo-electric response of the graphene composites are found to be 20 times higher than that of pure TiO2 in films with 25 units stacked. Importantly, the cathodic photocurrent changes to anodic photocurrent as the thickness increases, an important feature of efficient solar cells which is often ignored. Here graphene is proposed to perform similarly to the b6f complex in granum, by separating charges and transporting electrons through the stacked film. Using this innovation, stacked TiO2/graphene structures are now able to significantly increase photoanode thickness in solar cells without losing the ability to conduct electrons. Part 2. Novel layered structures of polyaniline (PANI) doped with graphene oxide (GO) were directly prepared by adding GO aqueous solution into the emeraldine base form of PANI (PANI-EB) dissolved in a mixture solution of m-cresol and ethanol. The method is simple and inexpensive because of saving inorganic or organic acids as the dopant, opening a new way to prepare hybrid materials of PANI with GO. It was proposed that the π–π planar structure of GO and the carboxyl groups on the surface of GO are served as the template and dopant, respectively that results in the formation of the layered structures. The doping function of GO in the PANI-GO has been proved by structural characterizations and conductivity measured by a four-probe method.
Keywords
Solar Cell Graphene Oxide Excited Electron Pure TiO2 Flake GraphiteReferences
- 1.Li, X., Fan, T., Zhou, H., Chow, S.-K., Zhang, W., Zhang, D., Guo, Q., Ogawa, H.: Adv. Funct. Mater. 19, 45 (2009)CrossRefGoogle Scholar
- 2.Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V., Reich, Z.: Plant Cell 17, 2580 (2005)CrossRefGoogle Scholar
- 3.Freitag, M.: Nat. Nano. 3, 455 (2008)CrossRefGoogle Scholar
- 4.Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
- 5.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)CrossRefGoogle Scholar
- 6.Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Nature 442, 282 (2006)CrossRefGoogle Scholar
- 7.Katsnelson, M.I.: Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
- 8.Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., Zhao, Y., Deng, W.-Q., Zhang, H., Liu, X.-W.: Chem. Eur. J. 17, 10832 (2011)CrossRefGoogle Scholar
- 9.Sakai, N., Ebina, Y., Takada, K., Sasaki, T.: J. Am. Chem. Soc. 126, 5851 (2004)CrossRefGoogle Scholar
- 10.Sasaki, T., Watanabe, M.: J. Phys. Chem. B 101, 10159 (1997)CrossRefGoogle Scholar
- 11.Williams, G., Seger, B., Kamat, P.V.: ACS Nano 2, 1487 (2008)CrossRefGoogle Scholar
- 12.Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: ACS Nano 4, 887 (2010)CrossRefGoogle Scholar
- 13.Sasaki, T., Ebina, Y., Fukuda, K., Tanaka, T., Harada, M., Watanabe, M.: Chem. Mat. 14, 3524 (2002)CrossRefGoogle Scholar
- 14.Hummers, W.S., Offeman, R.E.: J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
- 15.Sasaki, T., Watanabe, M.: J. Am. Chem. Soc. 120, 4682 (1998)CrossRefGoogle Scholar
- 16.Nethravathi, C., Rajamathi, M.: Carbon 2008, 46 (1994)Google Scholar
- 17.Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: J. Am. Chem. Soc. 128, 7720 (2006)CrossRefGoogle Scholar
- 18.Xu, Y.X., Bai, H., Lu, G.W., Li, C., Shi, G.Q.: J. Am. Chem. Soc. 130, 5856 (2008)CrossRefGoogle Scholar
- 19.Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Nano Lett. 7, 3499 (2007)CrossRefGoogle Scholar
- 20.Nakashima, N., Tomonari, Y., Murakami, H.: Chem. Lett. 31, 638 (2002)CrossRefGoogle Scholar
- 21.Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X., Welsher, K., Dai, H.J.: J. Am. Chem. Soc. 129, 2448 (2007)CrossRefGoogle Scholar
- 22.Yao, H.-B., Wu, L.-H., Cui, C.-H., Fang, H.-Y., Yu, S.-H.: J. Mater. Chem. 20, 5190 (2010)CrossRefGoogle Scholar
- 23.Manga, K.K., Zhou, Y., Yan, Y., Loh, K.P.: Adv. Funct. Mater. 19, 3638 (2009)CrossRefGoogle Scholar
- 24.Grätzel, M.: Nature 414, 338 (2001)CrossRefGoogle Scholar
- 25.Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hsiao, Y.H., Ma, C.C.M., Chang, M.C., Shao, H., Tsai, M.C., Hsieh, C.K., Tsai, C.H., Weng, F.B.: Nanotechnology 19, 1 (2008)Google Scholar
- 26.Kongkanand, A., MartinezDominguez, R., Kamat, P.V.: Nano Lett. 7, 676 (2007)CrossRefGoogle Scholar
- 27.Wang, X., Zhi, L.J., Mullen, K.: Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
- 28.Peter, L.M., Wijayantha, K.G.U.: Electrochim. Acta 45, 4543 (2000)CrossRefGoogle Scholar
- 29.Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
- 30.Liu, C.-J., Burghaus, U., Besenbacher, F., Wang, Z.L.: ACS Nano 4, 5517 (2010)CrossRefGoogle Scholar
- 31.Oekermann, T., Zhang, D., Yoshida, T., Minoura, H.: J. Phys. Chem. B 108, 2227 (2004)CrossRefGoogle Scholar
- 32.Archana, P.S., Jose, R., Vijila, C., Ramakrishna, S.: J. Phys. Chem. C 113, 21538 (2009)CrossRefGoogle Scholar
- 33.Berger, C.: Science 312, 1191 (2006)CrossRefGoogle Scholar
- 34.Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R.: Handbook of Conducting Polymers. Marcel Dekker, New York (1997); [b] Premamoy, G., Samir, K.S., Amit, C.: Eur. Polym. J. 35, 699 (1999)Google Scholar
- 35.Wu, T.M., Lin, Y.W., Liao, C.S.: Carbon 43, 734–740 (2005); [b] Wu, T.M., Lin, Y.W.: Polymer 47, 3576 (2006)Google Scholar
- 36.Zengin, H., Zhou, W.S., Jin, J.Y., Czerw, R., Smith, D.W., Echegoyen, L., Carroll, D.L., Foulger, S.H., Ballato, J.: Adv. Mater. 14, 1480 (2002)Google Scholar
- 37.Wan, M.X.: In: Li, Q. (ed.), Conducting Polymers with Micro or Nanometer Structure. Tsinghua University Press, Beijing and Springer, Berlin, Heidelberg (2008)Google Scholar
- 38.Wan, M.X.: Macromol. Rapid Commun. 30, 963–975 (2009)CrossRefGoogle Scholar
- 39.Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Science 315, 1379 (2007). [b] Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Science 315, 490 (2007). [c] Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Nat. Nano. 3 101 (2008). [d] Gilje, S., Han, S., Wang, M.S., Wang, K.L., Kaner, R.B.: Nano Lett. 7, 3394 (2007)Google Scholar
- 40.Freitag, M.: Nat. Nano. 3, 455 (2008)CrossRefGoogle Scholar
- 41.Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Nano Lett. 3, 1379 (2003)CrossRefGoogle Scholar
- 42.Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: J. Mater. Chem. 16, 155 (2006)CrossRefGoogle Scholar
- 43.Bai H, Xu YX, Zhao L, Li C, Shi GQ, Chem. Commun. 2009, 1667. [b] Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC, J. Am. Chem. Soc. 2006, 128, 7720. [c] Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc. 2008, 130, 5856Google Scholar
- 44.Wang, X., Zhi, L., Müllen, K.: Nano Lett. 8, 323 (2008). [b] Liu, Z.F., Liu, Q., Huang, Y., Ma, Y.F., Yin, S.G., Zhang, X.Y., Sun, W., Chen, Y.S.: Adv. Mater. 20, 3924 (2008). [c] Liu, Q., Liu, Z.F., Zhang, X.Y., Yang, L.Y., Zhang, N., Pan, G.L., Yin, S.G., Chen, Y.S., Wei, J.: Adv. Funct. Mater. 19, 894 (2009). [d] Nethravathi, C., Rajamathi, M.: Carbon 46, 1994 (2008)Google Scholar
- 45.Bissessur, R., Liu, P.K.Y., White, W., Scully, S.F.: Langmuir 22, 1729 (2006). [b] Matsuo, Y., Higashika, S., Kimura, K., Miyamoto, Y., Fukutsuka, T., Sugie, Y.: J. Mater. Chem. 12, 1592 (2002). [c] Wang, H.L., Hao, Q.L., Yang, X.J., Lua, L., Wang, X.: Electrochem. Commun. 11, 1158 (2009)Google Scholar
- 46.Cassagneau, T., Fendler, J.H., Johnson, S.A,, Mallouk. T.E.: Adv. Mater. 12, 1363 (2000). [b] Cassagneau, T., Guerin, F., Fendler, J.H.: Langmuir 16, 7318 (2000)Google Scholar
- 47.Huang, W.S., Humphrey, B.D., MacDiarmid, A.G.: J. Chem. Soc. Faraday Trans. 82, 2385 (1986)CrossRefGoogle Scholar
- 48.Chiang, J.C., MacDiarmid, A.G.: Synth. Met. 13, 193 (1986). [b] MacDiamid, A.G., Chiang, J.C., Richter, A.F., Epstein, A.J. Synth.Met. 18, 285 (1987)Google Scholar
- 49.Wan, M.X.: J. Polym. Sci. Part A 30, 543 (1992)CrossRefGoogle Scholar
- 50.Gu, H., Su, X., Loh, K.P.: J. Phys. Chem. B 109, 13611 (2005)CrossRefGoogle Scholar