Advertisement

Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells

  • Nailiang YangEmail author
Chapter
  • 590 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

As a novel two-dimensional (2D) material, graphene shows great benefits in electric and material science. Compared to 1D nanomaterials, it may show more excellent properties. Here, we introduced graphene as 2D bridges into the nanocrystalline electrodes of dye-sensitized solar cells, which brought a faster electron transport and a lower recombination, together with a higher light scattering. On the basis of these advantages, the short-circuit current density was increased by 45% without sacrificing the open-circuit voltage, and the total conversion efficiency was 6.97%, which was increased by 39%, comparing with the nanocrystalline titanium dioxide photoanode, and it was also much better than the 1D nanomaterial composite electrode.

Keywords

Electrochemical Impedance Spectrum Excellent Electrical Conduction Fast Electron Transport Cleave Mica Surface Graphene Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Freitag, M.: Nat. Nano. 3, 455 (2008)CrossRefGoogle Scholar
  2. 2.
    Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  3. 3.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)CrossRefGoogle Scholar
  4. 4.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Nature 442, 282 (2006)CrossRefGoogle Scholar
  5. 5.
    Katsnelson, M.I.: Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  6. 6.
    Li, D., Kaner, R.B.: Science 320, 1170 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Zhi, L., Müllen, K.: Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
  8. 8.
    Liu, Z.F., Liu, Q., Huang, Y., Ma, Y.F., Yin, S.G., Zhang, X.Y., Sun, W., Chen, Y.S.: Adv. Mater. 20, 3924 (2008)CrossRefGoogle Scholar
  9. 9.
    Liu, Q., Liu, Z.F., Zhang, X.Y., Yang, L.Y., Zhang, N., Pan, G.L., Yin, S.G., Chen, Y.S., Wei, J.: Adv. Funct. Mater. 19, 894 (2009)CrossRefGoogle Scholar
  10. 10.
    Di, C.A., Wei, D.C., Yu, G., Liu, Y.Q., Guo, Y.L., Zhu, D.B.: Adv. Mater. 20, 3289 (2008)CrossRefGoogle Scholar
  11. 11.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Nat. Mater. 6, 652 (2007)CrossRefGoogle Scholar
  12. 12.
    Ang, P.K., Chen, W., Wee, A.T.S., Loh, K.P.: J. Am. Chem. Soc. 130, 14392 (2008)CrossRefGoogle Scholar
  13. 13.
    O’Regan, B., Grätzel, M.: Nature 353, 737 (1991)CrossRefGoogle Scholar
  14. 14.
    Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Grätzel, M.: J. Am. Chem. Soc. 127, 16835 (2005)CrossRefGoogle Scholar
  15. 15.
    Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Jpn. J. Appl. Phys. 45, L638 (2006)CrossRefGoogle Scholar
  16. 16.
    Kong, F.T., Dai, S.Y., Wang, K.J.: Adv. OptoElectron. 2007, 1 (2007)CrossRefGoogle Scholar
  17. 17.
    Kong, F.T., Dai, S.Y.: Prog. Chem. 18, 1409 (2006)Google Scholar
  18. 18.
    Kuang, D.B., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S.M., Grätzel, M.: ACS Nano 2, 1113 (2008)CrossRefGoogle Scholar
  19. 19.
    Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Nano Lett. 6, 215 (2006)CrossRefGoogle Scholar
  20. 20.
    Grimes, C.A.: J. Mater. Chem. 17, 1451 (2007)CrossRefGoogle Scholar
  21. 21.
    Zhu, K., Neale, N.R., Miedaner, A., Frank, A.J.: Nano Lett. 7, 69 (2007)CrossRefGoogle Scholar
  22. 22.
    Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P., Walker, A.B.: J. Am. Chem. Soc. 130, 13364 (2008)CrossRefGoogle Scholar
  23. 23.
    Kongkanand, A., MartinezDominguez, R., Kamat, P.V.: Nano Lett. 7, 676 (2007)CrossRefGoogle Scholar
  24. 24.
    Brown, P., Takechi, K., Kamat, P.V.: J. Phys. Chem. C 112, 4776 (2008)CrossRefGoogle Scholar
  25. 25.
    Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hsiao, Y.H., Ma, C.C.M., Chang, M.C., Shao, H., Tsai, M.C., et al.: Nanotechnology 19, 1 (2008)Google Scholar
  26. 26.
    Williams, G., Seger, B., Kamat, P.V.: ACS Nano 2, 1487 (2008)CrossRefGoogle Scholar
  27. 27.
    Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: ACS Nano 2, 463 (2008)CrossRefGoogle Scholar
  28. 28.
    Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: J. Am. Chem. Soc. 128, 7720 (2006)CrossRefGoogle Scholar
  29. 29.
    Xu, Y.X., Bai, H., Lu, G.W., Li, C., Shi, G.Q.: J. Am. Chem. Soc. 130, 5856 (2008)CrossRefGoogle Scholar
  30. 30.
    Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K.: Nano Lett. 7, 3499 (2007)CrossRefGoogle Scholar
  31. 31.
    Nakashima, N., Tomonari, Y., Murakami, H.: Chem. Lett. 31, 638 (2002)CrossRefGoogle Scholar
  32. 32.
    Nakayama-Ratchford, N., Bangsaruntip, S., Sun, X., Welsher, K., Dai, H.J.: J. Am. Chem. Soc. 129, 2448 (2007)CrossRefGoogle Scholar
  33. 33.
    Nethravathi, C., Rajamathi, M.: Carbon 2008, 46 (1994)Google Scholar
  34. 34.
    Yum, J.H., Hagberg, D.P., Moon, S.J., Karlsson, K.M., Marinado, T., Sun, L.C., Hagfeldt, A., Nazeeruddin, M.K., Grätzel, M.: Angew. Chem. Int. Ed. 48, 1576 (2009)CrossRefGoogle Scholar
  35. 35.
    Tian, H.N., Yang, X.C., Chen, R.K., Pan, Y.Z., Li, L., Hagfeldt, A., Sun L.C., Chem. Commun. 3741 (2007)Google Scholar
  36. 36.
    Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P., Walker, A.B.: J. Am. Chem. Soc. 130, 13364 (2008)CrossRefGoogle Scholar
  37. 37.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  38. 38.
    Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Wada, Y., Yanagida, S.: J. Phys. Chem. B 105, 12809 (2001)CrossRefGoogle Scholar
  39. 39.
    Zhao, Y., Zhai, J., Wei, T.X., Jiang, L., Zhu, D.B.: J. Mater. Chem. 17, 5084 (2007)CrossRefGoogle Scholar
  40. 40.
    Park, N.G., Kim, K.M., Kang, M.G., Ryu, K.S., Chang, S.H., Shin, Y.: J. Adv. Mater. 17, 2349 (2005)CrossRefGoogle Scholar
  41. 41.
    Wang, Q., Moser, J.E., Grätzel, M.: J. Phys. Chem. B 109, 14945 (2005)CrossRefGoogle Scholar
  42. 42.
    van de Lagemaat, J., Park, N.G., Frank, A.J.: J. Phys. Chem. B 104, 2044 (2000)CrossRefGoogle Scholar
  43. 43.
    Grätzel, M.: Nature 414, 338 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations