Advertisement

Neuromodulatorische Einflüsse auf das Wohlbefinden: Dopamin und Oxytocin

  • Peter KirschEmail author
  • Harald Gruppe
Chapter
Part of the Psychotherapie: Praxis book series (ÜSÜR)

Zusammenfassung

Dieses Kapitel behandelt neurochemische Einflüsse auf das Wohlbefinden mit dem Fokus auf die Substanzen Dopamin und Oxytocin. Dopamin als Neurotransmitter und Oxytocin als Neuropeptid werden wichtige modulatorische Einflüsse auf das Erleben positiver Emotionen zugeschrieben. Während Dopamin in erster Linie mit Motivation und Belohnung assoziiert wird, spielt Oxytocin insbesondere eine wichtige Rolle bei der Entstehung von prosozialen Emotionen wie Geborgenheit und interpersoneller Nähe. Schon auf neurophysiologischer Ebene zeigt die Verschränkung beider Systeme mit einer Kolokalisation von Dopamin- und Oxytocinrezeptoren in wichtigen Regionen des Belohnungssystems, dass beide Aspekte positiver Emotionalität nicht unabhängig zu betrachten sind. Während Oxytocin über eine Dämpfung von Angst und Stress das Erleben sozialer Nähe und Bindung erlaubt, erhöht Dopamin die Motivation, sich positiven Reizen und Situationen anzunähern.

Literatur

  1. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165–178.CrossRefPubMedGoogle Scholar
  2. Amico, J. A., Seif, S. M., & Robinson, A. G. (1981). Oxytocin in human plasma: correlation with neurophysin and stimulation with estrogen. The Journal of Clinical Endocrinology and Metabolism, 52, 988–993.CrossRefPubMedGoogle Scholar
  3. Andari, E., Duhamel, J.R., Zalla, T., Herbrecht, E., Leboyer, M., & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences, 107 ( 9 ), 4389–4394.CrossRefGoogle Scholar
  4. Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94, 327–337.CrossRefPubMedGoogle Scholar
  5. Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. Neuroimage, 21, 1155–1166.CrossRefPubMedGoogle Scholar
  6. Bek, M. J., Eisner, G. M., Felder, R. A., & Jose, P. A. (2001). Dopamine receptors in hypertension. Mount Sinai Journal of Medicine, 68, 362–369.PubMedGoogle Scholar
  7. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.CrossRefPubMedGoogle Scholar
  8. Blaicher, W., Gruber, D., Bieglmayer, C., Blaicher, A. M., Knogler, W., & Huber, J. C. (1999). The role of oxytocin in relation to female sexual arousal. Gynecologic and Obstetric Investigation, 47, 125–126.CrossRefPubMedGoogle Scholar
  9. Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D. et al. (2000). Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. Journal of Psychoactive Drugs, 32 Suppl, 1–112.CrossRefGoogle Scholar
  10. Buijs, R. M., de Vries, G. J., & van Leeuwen, F. W. (1985). The distribution and synaptic release of oxytocin in the central nervous system. In J. A. Amico & A. G. Robinson (Eds.), Oxytocin. Clinical and laboratory studies (S. 77–86). Amsterdam: Elsevier.Google Scholar
  11. Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30, 173–187.CrossRefPubMedGoogle Scholar
  12. Buss, D. M. (2000). The evolution of happiness. American Psychologist, 55, 15–23.CrossRefPubMedGoogle Scholar
  13. Cardoso, C., Kingdon, D., & Ellenbogen, M.A. (2014). A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: moderation by method and mental health. Psychoneuroendocrinology, 49, 161–170.CrossRefPubMedGoogle Scholar
  14. Carlsson, A. (1995). The dopamine theory revisited. In S. R. Hirsch & D. R. Weinberger (Eds.), Schizophrenia (pp. 379–400). Oxford: Blackwell Sciene.Google Scholar
  15. Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583–590.CrossRefPubMedGoogle Scholar
  16. Champagne, F.A., (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers in Neuroendocrinology, 29, 386–397.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychological Bulletin, 126, 890–909.CrossRefPubMedGoogle Scholar
  18. de la Fuente-Fernandez, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J. et al. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioral Brain Research, 136, 359–363.CrossRefGoogle Scholar
  19. de la Fuente-Fernandez, R., Schulzer, M., & Stoessl, A. J. (2002). The placebo effect in neurological disorders. The Lancet Neurology, 1, 85–91.CrossRefPubMedGoogle Scholar
  20. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–517.PubMedGoogle Scholar
  21. Di Ciano, P., Coury, A., Depoortere, R. Y., Egilmez, Y., Lane, J. D., Emmett-Oglesby, M. W. et al. (1995). Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behavioural Pharmacology, 6, 311–322.CrossRefPubMedGoogle Scholar
  22. Diener, E., & Fujita, F. (1995). Resources, personal strivings, and subjective well-being: a nomothetic and idiographic approach. Journal of Personality and Social Psychology, 68, 926–935.CrossRefPubMedGoogle Scholar
  23. Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biological Psychiatry, 65, 728–731.CrossRefPubMedGoogle Scholar
  24. Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A. et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96.CrossRefPubMedGoogle Scholar
  25. Eckstein, M., Becker, B., Scheele, D., Scholz, C., Preckel, K., Schlaepfer, T.E., Grinevich, V., Kendrick, K.M., Maier, W., & Hurlemann, R. (2015). Oxytocin Facilitates the Extinction of Conditioned Fear in Humans. Biological Psychiatry, 78, 194–202.CrossRefPubMedGoogle Scholar
  26. Ekman, P. (1994). All emotions are basic. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions (pp. 15–19). New York, NY: Oxford University Press.Google Scholar
  27. Esch,T., & Stefano,G.B. (2004) „The neurobiology of pleasure, reward processes, addiction and their health implications“, Neuroendocrinology Letters, 25, 235–251.PubMedGoogle Scholar
  28. Esch, T., & Stefano, G. B. (2005). The Neurobiology of Love. Neuroendocrinology Letters, 26, 175–192.PubMedGoogle Scholar
  29. Field, T., Hernandez-Reif, M., Diego, M., Schanberg, S., & Kuhn, C. (2005). Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115, 1397–1413.CrossRefPubMedGoogle Scholar
  30. Freund-Mercier, M. J., & Stoeckel, M. E. (1995). Somatodendritic autoreceptors on oxytocin neurones. In R. Ivell & J. A. Russell (Eds.), Oxytocin. Cellular and molecular approaches in medicine and research (pp. 185–194). New York: Plenum Press.Google Scholar
  31. Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Science of the United States of America, 102, 17237–17240.CrossRefGoogle Scholar
  32. Gimpl, G., & Fahrenholz, F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiological Reviews, 81, 629–683.PubMedGoogle Scholar
  33. Green, L., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L., & Morris, M. (2001). Oxytocin and autistic disorder: alterations in peptide forms. Biological Psychiatry, 50, 609–613.CrossRefPubMedGoogle Scholar
  34. Grey, J. A. (1995). A model of the limbic system and the basal ganglia: Application to anxiety and schizophrenia. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 1165–1176). Cambridge: MIT Press.Google Scholar
  35. Guastella, A.J., Howard, A.L., Dadds, M.R., Mitchell, P., & Carson, D.S. (2010). A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology, 34, 917–923.CrossRefGoogle Scholar
  36. Hall, S.S., Lightbody, A.A., McCarthy, B.E., Parker, K.J., & Reiss, A.L. (2012). Effects of intranasal oxytocin on social anxiety in males with fragile X syndrome. Psychoneuroendocrinology, 37, 509–518.CrossRefPubMedGoogle Scholar
  37. Heath, R. G. (1963). Electrical self-stimulation of the brain in man. American Journal of Psychiatry, 120, 571–577.CrossRefPubMedGoogle Scholar
  38. Heath, R. G. (1972). Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. Journal of Nervous and Mental Disease, 154, 3–18.CrossRefPubMedGoogle Scholar
  39. Heimer, L., & Van Hoesen, G. W. (2006). The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neuroscience and Biobehavioral Reviews, 30, 126–147.CrossRefPubMedGoogle Scholar
  40. Heinrichs, M., Meinlschmidt, G., Neumann, I., Wagner, S., Kirschbaum, C., Ehlert, U. et al. (2001). Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. Journal of Clinical Endocrinology and Metabolism, 86, 4798–4804.CrossRefPubMedGoogle Scholar
  41. Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398.CrossRefPubMedGoogle Scholar
  42. Heinrichs, M., Soravia, L. M., Neumann, I. D., Stangier, U., de Quervain, D. J.-F., & Ehlert, U. (2006). Effects of oxytocin on social phobia. Paper presented at the Annual Meeting of the American College of Neuropsychopharmacology (ACNP), Hollywood, Florida, 3–7. Dezember.Google Scholar
  43. Huber, D., Veinante, P., & Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308, 245–248.CrossRefPubMedGoogle Scholar
  44. Insel, T. R. (1997). A neurobiological basis of social attachment. American Journal of Psychiatry, 154, 726–735.CrossRefPubMedGoogle Scholar
  45. Insel, T. R., & Hulihan, T. J. (1995). A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience, 109, 782–789.CrossRefPubMedGoogle Scholar
  46. Insel, T. R., & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Accademy of Science of the United States of America, 89, 5981–5985.CrossRefGoogle Scholar
  47. Izard, C. E. (1991). The psychology of emotions. New York, NY: Plenum Press.CrossRefGoogle Scholar
  48. James, W. (1884). What is an emotion? Mind, 9, 188–205.CrossRefGoogle Scholar
  49. Kirsch, P. (2015). Oxytocin in the socioemotional brain: implications for psychiatric disorders. Dialogues in Clinical Neuroscience, 17, 463–476.PubMedPubMedCentralGoogle Scholar
  50. Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S. et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 11489–11493.CrossRefPubMedGoogle Scholar
  51. Kirsch, P., Reuter, M., Mier, D., Lonsdorf, T., Stark, R., Gallhofer, B. et al. (2006). Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neuroscience Letters, 405, 196–201.CrossRefPubMedGoogle Scholar
  52. Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J., & Lou, H. C. (2002). Increased dopamine tone during meditation-induced change of consciousness. Cognitive Brain Research, 13, 255–259.CrossRefPubMedGoogle Scholar
  53. Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H. et al. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73, 553–566.CrossRefPubMedGoogle Scholar
  54. Koob, G. F., & Goeders, N. E. (1989). Neuroanatomical substrates of drug self-administration. In J. M. Liebman & S. J. Cooper (Eds.), The neuropharmacological basis of reward (pp. 214–263). Oxford: Oxford University Press.Google Scholar
  55. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676.CrossRefPubMedGoogle Scholar
  56. Kovacs, G. L., & De Wied, D. (1994). Peptidergic modulation of learning and memory processes. Pharmacological Reviews, 46, 269–291.PubMedGoogle Scholar
  57. Lange, C. (1887). Ueber Gemüthsbewegungen. Leipzig: Thomas.Google Scholar
  58. Le Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiology Reviews, 71, 155–234.Google Scholar
  59. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Reviews of Neuroscience, 23, 155–184.CrossRefGoogle Scholar
  60. Liu, Y., & Wang, Z. X. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121, 537–544.CrossRefPubMedGoogle Scholar
  61. McBride, W. J., Murphy, J. M., & Ikemoto, S. (1999). Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research, 101, 129–152.CrossRefPubMedGoogle Scholar
  62. McCarthy, M. M. (1995). Estrogen modulation of oxytocin and its relation to behavior. In R. Ivell & J. A. Russell (Eds.), Oxytocin. Cellular and molecular approaches in medicine and research (pp. 235–245). New York: Plenum Press.Google Scholar
  63. Menon, V., & Levitin, D. J. (2005). The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage, 28, 175–184.CrossRefPubMedGoogle Scholar
  64. Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12, 524–538.CrossRefPubMedGoogle Scholar
  65. Mitchell, M. D., Haynes, P. J., Anderson, A. B. M., & Turnbull, A. C. (1981). Plasma oxytocin concentrations during the menstrual cycle. European Journal of Obstetrics & Gynecology and Reproductive Biology, 12, 195–200.CrossRefGoogle Scholar
  66. Moore, H., West, A. R., & Grace, A. A. (1999). The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biological Psychiatry, 46, 40–55.CrossRefPubMedGoogle Scholar
  67. Murphy, M. R., Checkley, S. A., Seckl, J. R., & Lightman, S. L. (1990). Naloxone inhibits oxytocin release at orgasm in man. Journal of Clinical Endocrinology and Metabolism, 71, 1056–1058.CrossRefPubMedGoogle Scholar
  68. Nesse, R. M. (2004). Natural selection and the elusiveness of happiness. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 359, 1333–1347.CrossRefPubMedCentralGoogle Scholar
  69. Neumann, I. D. (2002). Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamo-pituitary-adrenal axis. In D. Poulain, S. Oliet & D. Theodosis (Eds.), Vasopressin and oxytocin. From genes to clinical applications (pp. 147–162). Amsterdam: Elsevier.CrossRefGoogle Scholar
  70. Nishioka, T., Anselmo-Franci, J. A., Li, P., Callahan, M. F., & Morris, M. (1998). Stress increases oxytocin release within the hypothalamic paraventricular nucleus. Brain Research, 781, 56–60.CrossRefGoogle Scholar
  71. Olazabal, D. E., & Young, L. J. (2006). Oxytocin receptors in the nucleus accumbens facilitate „spontaneous“ maternal behavior in adult female prairie voles. Neuroscience, 141, 559–568.CrossRefPubMedGoogle Scholar
  72. Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.CrossRefPubMedGoogle Scholar
  73. Panksepp, J. (2005). Affective neuroscience: the foundations of human and animal emotions. Oxford: Oxford University Press.Google Scholar
  74. Pedersen, C. A., & Prange, A. J. Jr. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences of the United States of America, 76, 6661–6665.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Phillips, A. G., & Fibiger, H. C. (1978). The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. Canadian Journal of Psychology, 32, 58–66.CrossRefPubMedGoogle Scholar
  76. Pitman, R. K., Orr, S. P., & Lasko, N. B. (1993). Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Research, 48, 107–117.CrossRefPubMedGoogle Scholar
  77. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). Is the short-latency dopamine response too short to signal reward error? Trends in Neurosciences, 22, 146–151.CrossRefPubMedGoogle Scholar
  78. Reuter, M., & Hennig, J. (2005). Association of the functional catechol-O-methyltransferase VAL158MET polymorphism with the personality trait of extraversion. Neuroreport, 16, 1135–1138.CrossRefPubMedGoogle Scholar
  79. Reuter, M., Schmitz, A., Corr, P., & Hennig, J. (2006). Molecular genetics support Gray's personality theory: the interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. International Journal of Neuropsychopharmacology, 9, 155–166.PubMedGoogle Scholar
  80. Reymond, M. J., & Porter, J. C. (1985). Involvement of hypothalamic dopamine in the regulation of prolactin secretion. Hormone Research, 22, 142–152.CrossRefPubMedGoogle Scholar
  81. Roth, R. H., & Elsworth, J. D. (1995). Biochemical pharmacology of midbrain dopamine neurons. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 227–243). New York: Raven Press.Google Scholar
  82. Salonia, A., Nappi, R. E., Pontillo, M., Daverio, R., Smeraldi, A., Briganti, A. et al. (2005). Menstrual cycle-related changes in plasma oxytocin are relevant to normal sexual function in healthy women. Hormones and Behavior, 47, 164–169.CrossRefPubMedGoogle Scholar
  83. Scheele, D., Wille, A., Kendrick, K.M., Stoffel-Wagner, B., Becker, B., Gunturkun, O., Maier, W., & Hurlemann, R. (2013). Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proceedings of the National Academy of Science, 110, 20308–20313.CrossRefGoogle Scholar
  84. Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V. et al. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60, 296–302.CrossRefPubMedGoogle Scholar
  85. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMedGoogle Scholar
  86. Shahrokh, D.K., Zhang, T.Y., Diorio, J., Gratton, A., & Meaney, M.J., (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151, 2276–2286.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Small, D. M., Jones-Gotman, M., & Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19, 1709–1715.CrossRefPubMedGoogle Scholar
  88. Smith, G. P. (1976). The arousal function of central catecholamine neurons. Annals of the New York Academy of Sciences, 270, 45–56.CrossRefPubMedGoogle Scholar
  89. Stemmler, G. (2002). Persönlichkeit und Emotion: Bausteine einer biobehavioralen Theorie. In M. Myrtek (Hrsg.), Die Person im biologischen und sozialen Kontext (S. 115–141). Göttingen: Hogrefe.Google Scholar
  90. Uvnäs-Moberg, K., Arn, I., & Magnusson, D. (2005). The psychobiology of emotion: the role of the oxytocinergic system. International Journal of Behavioral Medicine, 12, 59–65.CrossRefGoogle Scholar
  91. Vaitl, D. (1996). Interoception. Biological Psychology, 42, 1–27.CrossRefPubMedGoogle Scholar
  92. Verhoeff, N. P., Christensen, B. K., Hussey, D., Lee, M., Papatheodorou, G., Kopala, L. et al. (2003). Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: a replication study. Pharmacology, Biochemistry and Behavior, 74, 425–432.CrossRefPubMedGoogle Scholar
  93. Voruganti, L., Slomka, P., Zabel, P., Costa, G., So, A., Mattar, A. et al. (2001). Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D(2) binding ratios on SPECT imaging. Neuropsychopharmacology, 25, 642–650.CrossRefPubMedGoogle Scholar
  94. Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2012). Oxytocin administration to parent enhances infant physiological and behavioral readiness for social engagement. Biological Psychiatry, 72, 982–989.CrossRefPubMedGoogle Scholar
  95. Wigton, R., Radua, J., Allen, P., Averbeck, B., Meyer-Lindenberg, A., McGuire, P., Shergill, S.S., & Fusar-Poli, P. (2015). Neurophysiological effects of acute oxytocin administration: systematic review and meta-analysis of placebo-controlled imaging studies. Journal of Psychiatry and Neuroscience, 40, E1–22.CrossRefGoogle Scholar
  96. Wise, R. A. (1980). The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends in Neurosciences, 3, 91–95.CrossRefGoogle Scholar
  97. Young, L. J., Lim, M. M., Gingrich, B., & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133–138.CrossRefPubMedGoogle Scholar
  98. Zak, P. J., Kurzban, R., & Matzner, W. T. (2004). The Neurobiology of Trust. Annals of the New York Academy of Sciences, 1032, 224–227.CrossRefPubMedGoogle Scholar
  99. Zoicas, I., Slattery, D.A., & Neumann, I.D. (2014). Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology, 39, 3027–3035.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Zentralinstitut für Seelische Gesundheit AbteilungKlinische PsychologieMannheimDeutschland
  2. 2.Justus-Liebig-Universität GießenZentrum für Psychiatrie u. Psychotherapie Arbeitsgruppe kognitive NeurowissenschaftenGießenDeutschland

Personalised recommendations