Skip to main content

Rise Velocity of a Taylor Bubble in a Round Tube

  • Chapter
  • First Online:
Theory of Periodic Conjugate Heat Transfer

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 815 Accesses

Abstract

The present chapter is devoted the known classical problem of the two-phase flows dealing with the rise of the Taylor bubble in a pipe. In Introduction, we mentioned a series of examples of the physical processes demonstrating periodic hydrodynamic structures. One of them is the two-phase flow pattern usually called “slug flow.” This flow is characterized by the periodic structures in the form of the large gas bubbles (Taylor bubbles) rising in a vertical round pipe under the influence of the gravitational force [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One should point out that the parameter h should not be confused, of course, with the heat transfer coefficient.

References

  1. Funada T, Joseph DD, Maehara T, Yamashita S (2004) Ellipsoidal model of the rise of a Taylor bubble in a round tube. Int J Multiphase Flow 31:473–491

    Article  MATH  Google Scholar 

  2. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press

    Google Scholar 

  3. Dumitrescu DT (1943) Strömung an einer Luftbluse im senkrechten Rohr. Z. Angew Math Mech 23:139–149

    Article  MathSciNet  Google Scholar 

  4. Davies RM, Taylor GI (1950) The mechanics of large bubbles rising through liquids in tubes. Proc Royal Soc London A 200:375–390

    Article  Google Scholar 

  5. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Natl Bur Stan, Washington

    MATH  Google Scholar 

  6. Birkhoff G, Zarantonello E (1957) Jets, Wakes and cavities. Academic Press, New York

    MATH  Google Scholar 

  7. Labuntsov DA, Zudin YB (1976) About emerging of a Taylor bubble in a round pipe. Works of Moscow Power Engineering Institute. Issue 310: 107—115 (in Russian)

    Google Scholar 

  8. Stein EM, Shakarchi R (2003) Fourier analysis: an introduction. Princeton University Press, Princeton

    MATH  Google Scholar 

  9. Bellomo N, Lods B, Revelli R, Ridolfi L (2007) Generalized collocation methods—Solution to nonlinear problems. Birkhäuser, Boston

    MATH  Google Scholar 

  10. Zudin YB (1995) Calculation of the rise velocity of large gas bubbles. J Eng Phys Thermophys 68:10–15

    Article  MathSciNet  Google Scholar 

  11. Birkhoff G, Carter D (1957) Rising plane bubbles. J Math Phys 6:769–779

    MathSciNet  MATH  Google Scholar 

  12. Daripa PA (2000) Computational study of rising plane taylor bubbles. J Comput Phys 157(1):120–142

    Article  MATH  Google Scholar 

  13. Driscoll TA, Trefethen LN (2002) Schwarz-christoffel mapping. Cambridge University Press

    Google Scholar 

  14. Muskhelishvili NI (1968) Singular integral equations. Nauka Publishers, Moscow (in Russian)

    Google Scholar 

  15. Zudin YB (1992) Analog of the Rayleigh equation for the problem of bubble dynamics in a tube. J Eng Phys Thermophys 63:672–675

    Article  Google Scholar 

  16. Zudin YB (2013) The velocity of gas bubble rise in a tube. Thermophys Aeromech 20(1):29–38

    Article  Google Scholar 

  17. Zudin YB (2013) Analytical solution of the problem of the rise of a Taylor bubble. Phys Fluids 5(5):Paper 053302-053302-16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zudin, Y.B. (2017). Rise Velocity of a Taylor Bubble in a Round Tube. In: Theory of Periodic Conjugate Heat Transfer. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53445-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53445-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53444-1

  • Online ISBN: 978-3-662-53445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics