Skip to main content

Bubbles and Drops Dynamics in Continuous Media

  • Chapter
  • First Online:
Theory of Periodic Conjugate Heat Transfer

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 809 Accesses

Abstract

Many modern engineering processes involve various two-phase systems. This pertains, in particular, to the process of vapor generation and condensation (heat and nuclear energy industry), distillation and rectification (chemical engineering), as well as to various problems in refrigerating and cryogenic engineering. The present chapter will be concerned with two-phase systems of two limit types: gas (or vapor) bubbles in a flow of liquid (bubble flow) and liquid drops in a flow of gas (drop flow).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98

    Article  MATH  Google Scholar 

  2. Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9:145–185

    Article  MATH  Google Scholar 

  3. d’Agostino L, Salvetti MV (2008) Fluid dynamics of cavitation and cavitating turbopumps. Springer, Vien, New York

    MATH  Google Scholar 

  4. Zudin YB (1992) Analog of the rayleigh equation for the bubble dynamics in a tube. Inzh - Fiz Zh 63(1):28–31

    Google Scholar 

  5. Zudin YB (1995) Calculation of the rise velocity of large gas bubbles. Inzh-Fiz Zh 68(1):13–17

    MathSciNet  Google Scholar 

  6. Zudin YB (2013) Analytical solution of the problem of the rise of a Taylor bubble. Phys Fluids 25(5):053302

    Google Scholar 

  7. Zudin YB (1998) Calculation of the drift velocity in bubbly flow in a vertical tube. Inzh-Fiz Zh 71(6):996–999

    Google Scholar 

  8. Freeden W, Gutting M (2013) Special functions of mathematical (Geo-)Physics. Appl Numer Harmonic Anal, Springer, Basel

    Book  MATH  Google Scholar 

  9. Klaseboer E, Khoo BC (2006) A modified Rayleigh-Plesset model for a nonspherically symmetric oscillating bubble with applications to boundary integral methods. Eng Anal Bound Elem 30(1):59–71

    Article  MATH  Google Scholar 

  10. Zudin YB, Isakov NS, Zenin VV (2014) Generalized rayleigh equation for the bubble dynamics in a tube. J Eng Phys Thermophys 87(6):1487–1493

    Article  Google Scholar 

  11. Scripov VP (1974) Metastable Liquids. John Wiley & Sons, New York

    Google Scholar 

  12. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton, New York

    Google Scholar 

  13. Perrot P (1998) A to Z of thermodynamics. Oxford University Press

    Google Scholar 

  14. Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  15. Horst JH, Kashchiev D (2008) Rate of two-dimensional nucleation: verifying classical and atomistic theories by Monte Carlo simulation. J. Phys Chem B 112(29):8614–8618

    Article  Google Scholar 

  16. Sekine M, Yasuoka K, Kinjo T, Matsumoto M (2008) Liquid–vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn Res 40:597–605

    Article  MATH  Google Scholar 

  17. Chao L, Xiaobo W, Hualing Z (2010) Molecular dynamics simulation of bubble nucleation in superheated liquid. In: Proceedings of the 14th international heat transfer conference IHTC14, Aug 7–13, Washington. IHTC14- 22129

    Google Scholar 

  18. Griffiths DJ (2005) Introduction to quantum mechanics. 2nd ed. Prentice Hall International

    Google Scholar 

  19. Guénault AM (2003) Basic superfluids. Taylor & Francis, London

    Book  MATH  Google Scholar 

  20. Cumberbatch E, Uno S, Abebe H (2006) Nano-scale MOSFET device modelling with quantum mechanical effects. Eur J Appl Math 17:465–489

    Article  MathSciNet  MATH  Google Scholar 

  21. Keith AC, Lazzati D (2011) Thermal fluctuations and nanoscale effects in the nucleation of carbonaceous dust grains. Mon Not R Astron Soc 410(1):685–693

    Article  Google Scholar 

  22. Zudin YB (1998) Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J Eng Phys Thermophys 71:178–183

    Article  Google Scholar 

  23. Zudin YB (1998) The distance between nucleate boiling sites. High Temp 36:662–663

    Google Scholar 

  24. Moita AS, Moreira ALN, Roisman I (2010) Heat transfer during drop impact onto a heated surface. In: Proceedings of the ASME international heat transfer conference, IHTC—14, Washington DC, USA, 6:803–810

    Google Scholar 

  25. Perlekar P, Biferale L, Sbragaglia M, Srivastava S, Toschi F (2012) Droplet size distribution in homogeneous isotropic turbulence. Phys Fluids 24(6):065101

    Article  Google Scholar 

  26. Scarbolo L, Bianco F, Soldati A (2015) Coalescence and breakup of large droplets in turbulent channel flow. Phys Fluids 27:073302

    Article  Google Scholar 

  27. Fore LB, Ibrahim BB, Beus SG (2002) Visual measurements of droplet size in gas-liquid annular flow. Int J Multiph Flow 28:1895–1910

    Article  MATH  Google Scholar 

  28. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids a very large Reynolds numbers. Dokl Nauk SSSR 30:301–305

    Google Scholar 

  29. Frisch U (1996) Turbulence the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge, England

    Google Scholar 

  30. Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersionprocesses. AIChE J 1:289–295

    Article  Google Scholar 

  31. Zudin Y (1997) Calculation of the effect of evaporating drops on the relative law of heat exchange with a disperde mist flow. J Eng Phys Thermophys 70(6):507–510

    Article  Google Scholar 

  32. Prandtl L (1925) Über die ausgebildete Turbulenz (On Fully Developed Turbulence.). ZAMM 5:136–139

    Google Scholar 

  33. Moulden TH (1977) Handbook of turbulence. fundamental and applications. Frost W, Moulden TH (eds) Plenum Press, New York

    Google Scholar 

  34. Spalart PR, Allmaras SR (1992) A one–equation turbulence model for aerodynamic flows. AIAA Paper 92–0439, Jan 1992

    Google Scholar 

  35. Menter FR (1993) Zonal two-equation k-ω turbulence models for aerodynamic flows. AIAA Paper 93–2306, Jun 1993

    Google Scholar 

  36. Reichardt H (1951) Complete representation of a turbulent velocity distribution in smooth tubes Z. Angew Math Mech 31(7):208–219

    Article  Google Scholar 

  37. Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin Heidelberg, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zudin, Y.B. (2017). Bubbles and Drops Dynamics in Continuous Media. In: Theory of Periodic Conjugate Heat Transfer. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53445-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53445-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53444-1

  • Online ISBN: 978-3-662-53445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics