Fast Distributed Algorithms for Testing Graph Properties

  • Keren Censor-Hillel
  • Eldar Fischer
  • Gregory SchwartzmanEmail author
  • Yadu Vasudev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)


We provide a thorough study of distributed property testing – producing algorithms for the approximation problems of property testing in the CONGEST model. In particular, for the so-called dense graph testing model we emulate sequential tests for nearly all graph properties having 1-sided tests, while in the general and sparse models we obtain faster tests for triangle-freeness, cycle-freeness and bipartiteness, respectively. In addition, we show a logarithmic lower bound for testing bipartiteness and cycle-freeness, which holds even in the LOCAL model.

In most cases, aided by parallelism, the distributed algorithms have a much shorter running time as compared to their counterparts from the sequential querying model of traditional property testing. The simplest property testing algorithms allow a relatively smooth transitioning to the distributed model. For the more complex tasks we develop new machinery that may be of independent interest.


Sequential Test Dense Model Property Testing Full Version Graph Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. Comb. Probab. Comput. 20(4), 481–502 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle-freeness in general graphs. SIAM J. Discrete Math. 22(2), 786–819 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pp. 315–324 (2015)Google Scholar
  6. 6.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Distrib. Comput. 24(2), 79–89 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algorithms for testing graph properties. CoRR abs/1602.03718 (2016)Google Scholar
  9. 9.
    Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pp. 143–152 (2015)Google Scholar
  10. 10.
    Dolev, D., Lenzen, C., Peled, S.: “Tri, tri again”: finding triangles and small subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 195–209. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed task allocation. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 67–76 (2012)Google Scholar
  12. 12.
    Erdös, P.: Graph theory and probability. J. Math. 11, 34G38 (1959)MathSciNetGoogle Scholar
  13. 13.
    Fischer, E.: The art of uninformed decisions: a primer to property testing. Current Trends Theor. Comput. Sci. Challenge New Century I 2, 229–264 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings attached. In: Proceedings of the 17th International Conference on Distributed Computing and Networking (ICDCN), pp. 21: 1–21: 10 (2016)Google Scholar
  15. 15.
    Fox, J.: A new proof of the graph removal lemma. CoRR abs/1006.1300 (2010)Google Scholar
  16. 16.
    Ghaffari, M., Kuhn, F., Su, H.H.: Manuscript (2016)Google Scholar
  17. 17.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs. Combinatorica 19(3), 335–373 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs model. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 295–305. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Struct. Algorithms 23(1), 23–57 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Göös, M., Hirvonen, J., Levi, R., Medina, M., Suomela, J.: Non-local probes do not help with graph problems. CoRR abs/1512.05411 (2015)Google Scholar
  23. 23.
    Hirvonen, J., Rybicki, J., Schmid, S., Suomela, J.: Large cuts with local algorithms on triangle-free graphs. CoRR abs/1402.2543 (2014)Google Scholar
  24. 24.
    Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 355–364. ACM (2012)Google Scholar
  25. 25.
    Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraphproblem in the randomized multiparty simultaneous messages model. In: Proceedings of the 22nd International Colloquium on Structural Informationand Communication Complexity (SIROCCO), pp. 370–384 (2015)Google Scholar
  26. 26.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Lenzen, C., Peleg, D.: Efficient distributed source detection with limited bandwidth. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 375–382 (2013)Google Scholar
  28. 28.
    Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–196 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Peleg, D.: Distributed computing: a locality-sensitive approach. Soc. Ind. Appl. Math. 157, 2153–2169 (2000)zbMATHGoogle Scholar
  30. 30.
    Pettie, S., Su, H.: Distributed coloring algorithms for triangle-free graphs. Inf. Comput. 243, 263–280 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ron, D.: Property testing: a learning theory perspective. Found. Trends Mach. Learn. 1(3), 307–402 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Ron, D.: Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput. Sci. 5(2), 73–205 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sarma, A.D., Nanongkai, D., Pandurangan, G., Tetali, P.: Distributed random walks. J. ACM 60(1), 2 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Keren Censor-Hillel
    • 1
  • Eldar Fischer
    • 1
  • Gregory Schwartzman
    • 1
    Email author
  • Yadu Vasudev
    • 1
  1. 1.Department of Computer ScienceTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations