Skip to main content

Non-Bayesian Learning in the Presence of Byzantine Agents

  • Conference paper
  • First Online:
Distributed Computing (DISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9888))

Included in the following conference series:

Abstract

This paper addresses the problem of non-Bayesian learning over multi-agent networks, where agents repeatedly collect partially informative observations about an unknown state of the world, and try to collaboratively learn the true state. We focus on the impact of the Byzantine agents on the performance of consensus-based non-Bayesian learning. Our goal is to design an algorithm for the non-faulty agents to collaboratively learn the true state through local communication.

We propose an update rule wherein each agent updates its local beliefs as (up to normalization) the product of (1) the likelihood of the cumulative private signals and (2) the weighted geometric average of the beliefs of its incoming neighbors and itself (using Byzantine consensus). Under mild assumptions on the underlying network structure and the global identifiability of the network, we show that all the non-faulty agents asymptotically agree on the true state almost surely.

This research is supported in part by National Science Foundation awards NSF 1329681 and 1421918. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the funding agencies or the U.S. government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, every vector considered is a column vector.

References

  1. Bajovic, D., Jakovetic, D., Moura, J.M., Xavier, J., Sinopoli, B.: Large deviations performance of consensus+ innovations distributed detection with non-gaussian observations. IEEE Trans. Signal Process. 60(11), 5987–6002 (2012)

    Article  MathSciNet  Google Scholar 

  2. Cattivelli, F.S., Sayed, A.H.: Distributed detection over adaptive networks using diffusion adaptation. IEEE Trans. Signal Process. 59(5), 1917–1932 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chamberland, J.-F., Veeravalli, V.V.: Decentralized detection in sensor networks. IEEE Trans. Signal Process. 51(2), 407–416 (2003)

    Article  Google Scholar 

  4. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement. Distrib. Comput. 4(1), 9–29 (1990)

    Article  MathSciNet  Google Scholar 

  6. Gale, D., Kariv, S.: Bayesian learning in social networks. Games Econ. Behav. 45(2), 329–346 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hajnal, J., Bartlett, M.: Weak ergodicity in non-homogeneous markov chains. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 54, pp. 233–246. Cambridge University Press (1958)

    Google Scholar 

  8. Jadbabaie, A., Molavi, P., Sandroni, A., Tahbaz-Salehi, A.: Non-bayesian social learning. Games Econ. Behav. 76(1), 210–225 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jadbabaie, A., Molavi, P., Tahbaz-Salehi, A.: Information heterogeneity and the speed of learning in social networks. Columbia Business School Research Paper, (13–28) (2013)

    Google Scholar 

  10. Jakovetic, D., Moura, J.M., Xavier, J.: Distributed detection over noisy networks: large deviations analysis. IEEE Trans. Signal Process. 60(8), 4306–4320 (2012)

    Article  MathSciNet  Google Scholar 

  11. Lalitha, A., Sarwate, A., Javidi, T.: Social learning and distributed hypothesis testing. In: IEEE International Symposium on Information Theory, pp. 551–555. IEEE (2014)

    Google Scholar 

  12. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  13. Mendes, H., Herlihy, M.: Multidimensional approximate agreement in Byzantine asynchronous systems. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 391–400. ACM, New York (2013)

    Google Scholar 

  14. Molavi, P., Tahbaz-Salehi, A., Jadbabaie, A.: Foundations of non-bayesian social learning. Columbia Business School Research Paper (2015)

    Google Scholar 

  15. Nedic, A., Olshevsky, A., Uribe, C.A.: Nonasymptotic convergence rates for cooperative learning over time-varying directed graphs. ArXiv e-prints 1410.1977 (2014)

    Google Scholar 

  16. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perles, M.A., Sigron, M.: A generalization of tverberg’s theorem. ArXiv e-prints 0710.4668 (2007)

    Google Scholar 

  18. Rad, K.R., Tahbaz-Salehi, A.: Distributed parameter estimation in networks. In: 49th IEEE Conference on Decision and Control (CDC), pp. 5050–5055. IEEE (2010)

    Google Scholar 

  19. Shahrampour, S., Jadbabaie, A.: Exponentially fast parameter estimation in networks using distributed dual averaging. In: 52nd IEEE Conference on Decision and Control, pp. 6196–6201. IEEE (2013)

    Google Scholar 

  20. Shahrampour, S., Rakhlin, A., Jadbabaie, A.: Distributed detection: finite-time analysis and impact of network topology (2014)

    Google Scholar 

  21. Shahrampour, S., Rakhlin, A., Jadbabaie, A.: Finite-time analysis of the distributed detection problem. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 598–603. IEEE (2015)

    Google Scholar 

  22. Su, L., Vaidya, N.: Reaching approximate Byzantine consensus with multi-hop communication. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 21–35. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  23. Su, L., Vaidya, N.H.: Defending non-Bayesian learning against adversarial attacks. ArXiv e-prints, June 2016

    Google Scholar 

  24. Tsitsiklis, J.N.: Decentralized detection by a large number of sensors. Math. Control Signals Syst. 1(2), 167–182 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaidya, N.H.: Iterative Byzantine vector consensus in incomplete graphs. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 14–28. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. Vaidya, N.H., Garg, V.K.: Byzantine vector consensus in complete graphs. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2013, pp. 65–73. ACM, New York (2013)

    Google Scholar 

  27. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate Byzantine consensus in arbitrary directed graphs. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 365–374. ACM (2012)

    Google Scholar 

  28. Varshney, P.K.: Distributed bayesian detection: Parallel fusion network. In: Distributed Detection and Data Fusion, pp. 36–118. Springer, New York (1997)

    Google Scholar 

  29. Wolfowitz, J.: Products of indecomposable, aperiodic, stochastic matrices. Proc. Am. Math. Soc. 14(5), 733–737 (1963)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, L., Vaidya, N.H. (2016). Non-Bayesian Learning in the Presence of Byzantine Agents. In: Gavoille, C., Ilcinkas, D. (eds) Distributed Computing. DISC 2016. Lecture Notes in Computer Science(), vol 9888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53426-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53426-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53425-0

  • Online ISBN: 978-3-662-53426-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics