Advertisement

Distributed Testing of Excluded Subgraphs

  • Pierre Fraigniaud
  • Ivan Rapaport
  • Ville Salo
  • Ioan TodincaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)

Abstract

We study property testing in the context of distributed computing, under the classical CONGEST model. It is known that testing whether a graph is triangle-free can be done in a constant number of rounds, where the constant depends on how far the input graph is from being triangle-free. We show that, for every connected 4-node graph H, testing whether a graph is H-free can be done in a constant number of rounds too. The constant also depends on how far the input graph is from being H-free, and the dependence is identical to the one in the case of testing triangle-freeness. Hence, in particular, testing whether a graph is \(K_4\)-free, and testing whether a graph is \(C_4\)-free can be done in a constant number of rounds (where \(K_k\) denotes the k-node clique, and \(C_k\) denotes the k-node cycle). On the other hand, we show that testing \(K_k\)-freeness and \(C_k\)-freeness for \(k\ge 5\) appear to be much harder. Specifically, we investigate two natural types of generic algorithms for testing H-freeness, called DFS tester and BFS tester. The latter captures the previously known algorithm to test the presence of triangles, while the former captures our generic algorithm to test the presence of a 4-node graph pattern H. We prove that both DFS and BFS testers fail to test \(K_k\)-freeness and \(C_k\)-freeness in a constant number of rounds for \(k\ge 5\).

References

  1. 1.
    Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle-freeness in general graphs. SIAM J. Discrete Math. 22(2), 786–819 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Becker, F., Kosowski, A., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Allowing each node to communicate only once in a distributed system: shared whiteboard models. Distrib. Comput. 28(3), 189–200 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Behrend, F.A.: On sets of integers which contain no three terms in arithmetical progression. Proc. Natl. Acad. Sci. 32(12), 331 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algorithms for testing graph properties. CoRR abs/1602.03718, February 2016Google Scholar
  7. 7.
    Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: Proceedings of PODC 2015, pp. 143–152 (2015)Google Scholar
  8. 8.
    Das-Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dolev, D., Lenzen, C., Peled, S.: “Tri, Tri Again”: finding triangles and small subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 195–209. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of PODC 2014, pp. 367–376 (2014)Google Scholar
  11. 11.
    Elkin, M.: An unconditional lower bound on the time-approximation trade-off for the distributed minimum spanning tree problem. SIAM J. Comput. 36(2), 433–456 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: Proceedings of PODC 2013, pp. 157–165 (2013)Google Scholar
  13. 13.
    Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Proceedings of FOCS 2011, pp. 708–717 (2011)Google Scholar
  14. 14.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. Distrib. Comput. 26(4), 223–242 (2013)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  17. 17.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Göös, M., Jukka Suomela, J.: Locally checkable proofs. In: Proceedings of PODC 2011, pp. 159–168 (2011)Google Scholar
  19. 19.
    Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In: Proceedings of PODC 2015, pp. 91–100 (2015)Google Scholar
  20. 20.
    Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time distributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 514–530. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraphproblem in the randomized multiparty simultaneous messages model. In: Scheideler, C. (ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370–384. Springer, Heidelberg (2015)Google Scholar
  22. 22.
    Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In: Proceedings of PODC 2013, pp. 42–50 (2013)Google Scholar
  23. 23.
    Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter graphs. Distrib. Comput. 18(6), 453–460 (2006)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST construction in \({{\cal O}}(\log \log n)\) communication rounds. In: Proceedings of SPAA 2003, pp. 94–100 (2003)Google Scholar
  25. 25.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting. In: Proceedings of PODC 2011, pp. 249–256 (2011)Google Scholar
  27. 27.
    Peleg, D.: Distributed Computing: A Locality-sensitive Approach. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Reiter, F.: Distributed graph automata. In: Proceedings of LICS 2015, pp. 192–201 (2015)Google Scholar
  29. 29.
    Schoen, T., Shkredov, I.D.: Roth’s theorem in many variables. Isr. J. Math. 199(1), 287–308 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Ivan Rapaport
    • 2
  • Ville Salo
    • 2
  • Ioan Todinca
    • 3
    Email author
  1. 1.CNRS and University Paris DiderotParisFrance
  2. 2.DIM-CMM (UMI 2807 CNRS)Universidad de ChileSantiagoChile
  3. 3.Université d’OrléansOrléansFrance

Personalised recommendations