Anonymity-Preserving Failure Detectors

  • Zohir Bouzid
  • Corentin TraversEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)


The paper investigates the consensus problem in anonymous, failures prone and asynchronous shared memory systems. It introduces a new class of failure detectors, called anonymity-preserving failure detectors suited to anonymous systems. As its name indicates, a failure detector in this class cannot be relied upon to break anonymity. For example, the anonymous perfect detector AP, which gives at each process an estimation of the number of processes that have failed belongs to this class.

The paper then determines the weakest failure detector among this class for consensus. This failure detector, called \(C \), may be seen as a loose failures counter: (1) after a failure occurs, the counter is eventually incremented, and (2) if two or more processes are non-faulty, it eventually stabilizes.


Shared Memory Correct Process Failure Detector Failure Pattern Consensus Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angluin, D.: Local and global properties in networks of processors (extended abstract). In: STOC 1980, pp. 82–93. ACM (1980)Google Scholar
  2. 2.
    Aspnes, J.: A modular approach to shared-memory consensus, with applications to the probabilistic-write model. Distributed Comput. 25(2), 179–188 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theor. Comput. Syst. 55(3), 451–474 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Attiya, H.: Adapting to point contention with long-lived safe agreement. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 10–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous shared memory systems. Inf. Comput. 173(2), 162–183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Attiya, H., Snir, M.: Better computing on the anonymous ring. J. Algorithms 12(2), 204–238 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonnet, F., Raynal, M.: Consensus in anonymous distributed systems: Is there a weakestfailure detector? In: AINA 2010, pp. 206–213. IEEE (2010)Google Scholar
  8. 8.
    Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure detectors. Distributed Comput. 26(3), 141–158 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronouscomputations. In: PODC 1993, pp. 91–100. ACM (1993)Google Scholar
  10. 10.
    Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation algorithm. Distributed Comput. 14(3), 127–146 (2001)CrossRefGoogle Scholar
  11. 11.
    Bouzid, Z., Travers, C.: Anonymity preserving failure detectors. Technical Report, LaBRI, July 2016.
  12. 12.
    Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Danezis, G., Diaz, C.: A survey of anonymous communication channels. Technical Report, MSR-TR-2008-35, Microsoft Research (2008)Google Scholar
  15. 15.
    Delporte-Gallet, C., Fauconnier, H.: Two consensus algorithms with atomic registers and failure detector \(\Omega \). In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Tight failure detection bounds on atomic object implementations. J. ACM 57(4), 22:1–22:32 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fich, F.E., Herlihy, M., Shavit, N.: On the space complexity of randomized synchronization. J. ACM 45(5), 843–862 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Freiling, F.C., Guerraoui, R., Kuznetsov, P.: The failure detector abstraction. ACM Comput. Surv. 43(2), 9 (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony (extended abstract). In: PODC 1998, pp. 143–152. ACM (1998)Google Scholar
  20. 20.
    Gafni, E.: The extended BG-simulation and the characterization of \(t\)-resiliency. In: STOC 1909, pp. 85–92. ACM (1990)Google Scholar
  21. 21.
    Gafni, E., Kuznetsov, P.: On set consensus numbers. Distributed Comput. 24(3–4), 149–163 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Guerraoui, R., Hadzilacos, V., Kuznetsov, P., Toueg, S.: The weakest failure detectors to solve quittable consensus and nonblocking atomic commit. SIAM J. Comput. 41(6), 1343–1379 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distributed Comput. 20(3), 165–177 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)MathSciNetGoogle Scholar
  25. 25.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I-characterizing the solvable cases. Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)CrossRefGoogle Scholar
  26. 26.
    Zieliński, P.: Anti-\(\varOmega \): the weakest failure detector for set agreement. Distributed Comput. 22(5–6), 335–348 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LaBRI, U. BordeauxBordeauxFrance

Personalised recommendations