Advertisement

Fast Two-Robot Disk Evacuation with Wireless Communication

  • Ioannis LamprouEmail author
  • Russell Martin
  • Sven Schewe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)

Abstract

In the fast evacuation problem, we study the path planning problem for two robots who want to minimize the worst-case evacuation time on the unit disk. The robots are initially placed at the center of the disk. In order to evacuate, they need to reach an unknown point, the exit, on the boundary of the disk. Once one of the robots finds the exit, it will instantaneously (using wireless communication) notify the other agent, who will make a beeline to it.

The problem has been studied for robots with the same speed [8]. We study a more general case where one robot has speed 1 and the other has speed \(s \ge 1\). We provide optimal evacuation strategies in the case that \(s \ge c_{2.75} \approx 2.75\) by showing matching upper and lower bounds on the worst-case evacuation time. For \(1\le s < c_{2.75}\), we show (non-matching) upper and lower bounds on the evacuation time with a ratio less than 1.22. Moreover, we demonstrate that a different-speeds generalization of the two-robot search strategy from [8] is outperformed by our proposed strategies for any \(s \ge c_{1.71} \approx 1.71\).

Keywords

Evacuation Different speeds Disk Wireless Fast robots 

References

  1. 1.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International Series in Operations Research and Management Science, vol. 55. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  2. 2.
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inform. Comput. 106, 234–252 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beck, A.: On the linear search problem. Naval Res. Logist. 2, 221–228 (1964)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Golovach (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 205–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT 2004, pp. 302–308 (2004)Google Scholar
  7. 7.
    Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (Extended Abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Gluss, B.: An alternative solution to the “lost at sea” problem. Naval Res. Logistics Q. 8, 117–122 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle. In: Papavassiliou, S., Ruehrup, S. (eds.) Ad-hoc, Mobile, and Wireless Networks. LNCS, vol. 9143, pp. 195–209. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Jeż, A., Łopuzański, J.: On the two-dimensional cow search problem. Inf. Process. Lett. 131, 543–547 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Inform. Comput. 131, 63–80 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Parsons, T.D.: Pursuit-evasion in a graph, in theory and applications of graphs. In: Proceedings of the Michigan May 11–15, pp. 426–441 (1976)Google Scholar
  18. 18.
    Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37, 165–186 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations