Advertisement

Abstract

Chemical biology, which emerged over decades as a complex hybridization of bioorganic chemistry, biochemistry, cell biology, and pharmacology (Bucci et al. Nat Chem Biol 6:847–854, 2010 [1]), is considered to be a modern interdisciplinary science. It involves the application of molecules from synthetic chemistry, as well as other chemical techniques and tools, to the understanding and exploring of biological problems. The past few decades have been a remarkable period for the chemical biology, with numerous intellectual ideas and methodological strategies coming to the center stage of the interface of chemistry and biology. It is among the fastest growing areas in natural sciences and in chemistry in particular.

Keywords

Antimicrobial Peptide Host Protein Acyl Carrier Protein Coiled Coil Chemical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bucci M, Coodman C, Sheppard TL et al (2010) A decade of chemical biology. Nat Chem Biol 6:847–854CrossRefGoogle Scholar
  2. 2.
    Vella F (2005) Chemical biology: a practical course: Waldmann, H., and Jenning P. Biochem Mol Biol EDU 33:313a–314CrossRefGoogle Scholar
  3. 3.
    Liu YS, Patricelli MP, Cravatt BF et al (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 96:14694–14699CrossRefGoogle Scholar
  4. 4.
    Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefGoogle Scholar
  5. 5.
    Plante OJ, Palmacci ER, Seeberger PH et al (2001) Automated solid-phase synthesis of oligosaccharides. Science 291:1523–1527CrossRefGoogle Scholar
  6. 6.
    Kuhlman B, Dantas G, Ireton GC et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368CrossRefGoogle Scholar
  7. 7.
    Lewis WG, Green LG, Grynszpan F et al (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed 41:1053–1057CrossRefGoogle Scholar
  8. 8.
    Baran PS, Maimone TJ, Richter JM et al (2007) Total synthesis of marine natural products without using protecting groups. Nature 446:404–408CrossRefGoogle Scholar
  9. 9.
    Bok JW, Chiang Y-M, Szewczyk E et al (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–464CrossRefGoogle Scholar
  10. 10.
    Uttamapinant C, White KA, Baruah H et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci USA 107:10914–10919CrossRefGoogle Scholar
  11. 11.
    Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2:79–83CrossRefGoogle Scholar
  12. 12.
    Steiner H, Hultmark D, Engostöm Å et al (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–268CrossRefGoogle Scholar
  13. 13.
    Selsted ME, Harwig SS, Gans T et al (1985) Primary structure of three human neutrophil defensins. J Clin Invest 76:1436–1439CrossRefGoogle Scholar
  14. 14.
    Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10CrossRefGoogle Scholar
  15. 15.
    Yang L, Weiss TM, Lehrer RI et al (2000) Crystallization of antimicrobial probes in membranes: magainin and protegrin. Biophys J 79:2002–2009CrossRefGoogle Scholar
  16. 16.
    Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70CrossRefGoogle Scholar
  17. 17.
    Maloy WL, Kari UP (1995) Structure-activity studies on magninins and other host defense peptides. Biopolymers 37:105–122CrossRefGoogle Scholar
  18. 18.
    Porter EA, Wang X, Lee H-S et al (2000) Non-haemolytic β-amino-acid oligomers. Nature 404:565CrossRefGoogle Scholar
  19. 19.
    Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  20. 20.
    Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120CrossRefGoogle Scholar
  21. 21.
    Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860CrossRefGoogle Scholar
  22. 22.
    Somers RC, Bawendi MG, Nocera DG et al (2007) CdSe nanoctrysal based chem-/bio-sensors. Chem Soc Rev 36:579–591CrossRefGoogle Scholar
  23. 23.
    Walker GW, Sundar VC, Rudzinski CM et al (2003) Quantum-dot optical temperature probes. Appl Phys Lett 83:3555–3557CrossRefGoogle Scholar
  24. 24.
    Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300CrossRefGoogle Scholar
  25. 25.
    Dabbousi BO, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475CrossRefGoogle Scholar
  26. 26.
    Carter DC, Chang B, Ho JX et al (1994) Perliminary crystallographic studies of four crystal forms of serum albumin. Eur J Biochem 226:1049–1052CrossRefGoogle Scholar
  27. 27.
    Slocik JM, Naik RR (2010) Probing peptide-nanomaterial interactions. Chem Soc Rev 39:3454–3463CrossRefGoogle Scholar
  28. 28.
    Peelle BR, Krauland EM, Wittrup KD et al (2005) Design criteria for engineering inorganic material-specific peptides. Langmuir 21:6929–6933CrossRefGoogle Scholar
  29. 29.
    Blanco-Canosa JB, Medintz IL, Farrell D et al (2010) Rapid covalent ligation of fluorescent peptides to water solubilized quantum dots. J Am Chem Soc 132:10027–10033CrossRefGoogle Scholar
  30. 30.
    Wang J, Xia J (2011) Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis. Anal Chem 83:6323–6329CrossRefGoogle Scholar
  31. 31.
    Lu Y, Wang J, Wang J et al (2012) Genetically encodable design of ligand “bundling” on the surface of nanoparticles. Langmuir 28:13788–13792CrossRefGoogle Scholar
  32. 32.
    Chen Z (2005) General biology, 2nd edn. Higher Education Press, BeijingGoogle Scholar
  33. 33.
    Tsien RY (1998) The green fluorescent protein. Ann Rev Biochem 67:509–544CrossRefGoogle Scholar
  34. 34.
    Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. Red fluorescent protein. Nat Biotechnol 22:1567–1572CrossRefGoogle Scholar
  35. 35.
    Griffin BA, Adams SR, Tsien RY et al (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272CrossRefGoogle Scholar
  36. 36.
    Hermanson G (2008) Bioconjugate techniques, 2nd edn. Academic Press, LondonGoogle Scholar
  37. 37.
    Antos JM, Francis MB (2004) Selective tryptophan modification with rhodium carbenoids in aqueous solution. J Am Chem Soc 126:10256–10257CrossRefGoogle Scholar
  38. 38.
    Joshi NS, Whitaker LR, Francis MB et al (2004) A three-component mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc 126:15942–15943CrossRefGoogle Scholar
  39. 39.
    Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using π-allylpalladium complexes. J Am Chem Soc 128:1080–1081CrossRefGoogle Scholar
  40. 40.
    Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Ed 44:34–66CrossRefGoogle Scholar
  41. 41.
    Griffin BA, Adams SR, Jones J et al (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol 327:565–578CrossRefGoogle Scholar
  42. 42.
    Adams SR, Campbell RE, Gross LA et al (2002) New biarsenical ligands and tetracycteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076CrossRefGoogle Scholar
  43. 43.
    Cao H, Chen B, Squier TC et al (2006) CrAsH: a biarsenical multi-use affinity probe with low non-specific fluorescence. Chem Commun 42:2601–2603CrossRefGoogle Scholar
  44. 44.
    Cao H, Xiong Y, Wang T et al (2007) A red Cy3-based biarsenical fluorescent probe targeted to a complementary binding peptide. J Am Chem Soc 129:8672–8673CrossRefGoogle Scholar
  45. 45.
    Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507CrossRefGoogle Scholar
  46. 46.
    Halo TL, Appelbaum J, Hobert EM et al (2009) Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131:438–439CrossRefGoogle Scholar
  47. 47.
    Ojida A, Honda K, Shinmi D et al (2006) Oligo-Asp tag/Zn(II) complex probes as a new pair for labeling and fluorescence imaging of proteins. J Am Chem Soc 128:10452–10459CrossRefGoogle Scholar
  48. 48.
    Nonaka H, Tsukiji S, Ojida A et al (2007) Non-enzymatic covalent protein labeling using a reactive tag. J Am Chem Soc 129:15777–15779CrossRefGoogle Scholar
  49. 49.
    Nonaka H, Fujishima SH, Uchinomiya SH et al (2010) Selective covalent labeling of tag-fused GPCR proteins on live cell surface with a synthetic probe for their functional analysis. J Am Chem Soc 132:9301–9309CrossRefGoogle Scholar
  50. 50.
    Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89CrossRefGoogle Scholar
  51. 51.
    O’Hare HM, Johnsson K, Gautier A et al (2007) Chemical probes shed light on protein function. Curr Opin Struct Biol 17:488–494CrossRefGoogle Scholar
  52. 52.
    Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136CrossRefGoogle Scholar
  53. 53.
    George N, Pick H, Vogel H et al (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126:8896–8897CrossRefGoogle Scholar
  54. 54.
    Yin J, Liu F, Li X et al (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126:7754–7755CrossRefGoogle Scholar
  55. 55.
    Janssen DB (2004) Evolving haloalnane dehalognease. Curr Opin Chem Biol 8:150–159CrossRefGoogle Scholar
  56. 56.
    Los GV, Encell LP, McDougall MG et al (2008) Halo tag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382CrossRefGoogle Scholar
  57. 57.
    Janeway C (2001) Immunobiology, 5th edn. Garland Publishing, New YorkGoogle Scholar
  58. 58.
    Litman GW, Rast JP, Shamblott MJ et al (1993) Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol 10:60–72Google Scholar
  59. 59.
    Hopp TP, Prichett KS, Price VL et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210CrossRefGoogle Scholar
  60. 60.
    Lata S, Gavutis M, Tampé R et al (2006) Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J Am Chem Soc 128:2365–2372CrossRefGoogle Scholar
  61. 61.
    Guignet EG, Hovius R, Vogel H et al (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444CrossRefGoogle Scholar
  62. 62.
    Apostolovic B, Danial M, Klok HA et al (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 39:3541–3575CrossRefGoogle Scholar
  63. 63.
    Yano Y, Yano A, Oishi S et al (2008) Coiled-coil tag-probe system for quick labeling of membrane receptors in living cells. ACS Chem Biol 3:341–345CrossRefGoogle Scholar
  64. 64.
    Nakase I, Okumura S, Tanaka G et al (2012) Signal transduction using an artificial receptor system that undergoes dimerization upon addition of a bivalent leucine-zipper ligand. Angew Chem Int Ed 51:7464–7467CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ChemistryThe Chinese University of Hong KongHong KongChina

Personalised recommendations