Skip to main content

Chloroplast and Mitochondrial Genomes of Tomato

  • Chapter
  • First Online:
Book cover The Tomato Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1698 Accesses

Abstract

This chapter summarizes the main features of the tomato plastid and mitochondrial genomes in the context of the current knowledge about “orthologue” genomes from other higher plants species in a historical perspective. We have focused on the application of this knowledge to aid in deciphering the functional roles of these organelles in growth and developmental processes of the tomato plants, especially on those related to fruit ripening. It also presents an assessment of the phylogenetic position of tomato, based on the available information of plastid and chondrome sequences from other land plants; which adds to the understanding of the evolutionary history of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelnoor RV, Yule R, Elo A et al (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973. doi:10.1073/pnas.1037651100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50:348–358. doi:10.1007/s002399910038

    Article  CAS  PubMed  Google Scholar 

  • Adams K, Palmer J (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395. doi:10.1016/S1055-7903(03)00194-5

    Article  CAS  PubMed  Google Scholar 

  • Adams KL, Daley DO, Qiu YL et al (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357. doi:10.1038/35042567

    Article  CAS  PubMed  Google Scholar 

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alverson AJ, Wei X, Rice DW et al (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448. doi:10.1093/molbev/msq029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alverson AJ, Rice DW, Dickinson S et al (2011a) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell. doi:10.1105/tpc.111.087189

    PubMed  PubMed Central  Google Scholar 

  • Alverson AJ, Zhuo S, Rice DW et al (2011b) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 6:e16404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Bankier A, Barrell B et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M et al (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S et al (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99

    Article  CAS  PubMed  Google Scholar 

  • Ayliffe MA, Timmis JN (1992a) Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA. Theor Appl Genet 85–85:229–238. doi:10.1007/BF00222864

    Google Scholar 

  • Ayliffe MA, Timmis JN (1992b) Plastid DNA sequence homologies in the tobacco nuclear genome. Mol Gen Genet 236:105–112

    CAS  PubMed  Google Scholar 

  • Ayliffe MA, Scott NS, Timmis JN (1998) Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol 15:738–745

    Article  CAS  PubMed  Google Scholar 

  • Backert S, Börner T (2000) Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.). Curr Genet 37:304–314

    Article  CAS  PubMed  Google Scholar 

  • Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344:262–265

    Article  CAS  PubMed  Google Scholar 

  • Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572

    Article  CAS  PubMed  Google Scholar 

  • Barsan C, Zouine M, Maza E et al (2012) Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiol 160:708–725. doi:10.1104/pp.112.203679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bathgate B, Purton ME, Grierson D, Goodenough PW (1985) Plastid changes during the conversion of chloroplasts to chromoplasts in ripening tomatoes. Planta 165:197–204. doi:10.1007/BF00395042

    Article  CAS  PubMed  Google Scholar 

  • Bausher MG, Singh ND, Lee S-B et al (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var “Ridge Pineapple”: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21. doi:10.1186/1471-2229-6-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bedbrook JR, Bogorad L (1976) Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc Natl Acad Sci USA 73:4309–4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedbrook JR, Kolodner R, Bogorad L (1977) Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell 11:739–749

    Article  CAS  PubMed  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666. doi:10.1105/tpc.160771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensasson D, Zhang D-X, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321. doi:10.1016/S0169-5347(01)02151-6

    Article  PubMed  Google Scholar 

  • Blanehard JL, Schmidt GW (1995) Pervasive migration of organellar DNA to the nucleus in plants. J Mol Evol 41:397–406

    Article  Google Scholar 

  • Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82:549–557

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Penaflor C, Kuehl JV et al (2006) Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 6:77. doi:10.1186/1471-2148-6-77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang C-C, Lin H-C, Lin I-P et al (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291. doi:10.1093/molbev/msj029

    Article  CAS  PubMed  Google Scholar 

  • Chaw S-M, Shih AC-C, Wang D et al (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615. doi:10.1093/molbev/msn009

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Guan R, Chang S et al (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One 6:e17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung WY, Scott NS (1989) A contiguous sequence in spinach nuclear DNA is homologous to three separated sequences in chloroplast DNA. Theor Appl Genet 77:625–633

    Article  CAS  PubMed  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP et al (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190. doi:10.1093/molbev/msl089

    Article  CAS  PubMed  Google Scholar 

  • Chung H-J, Jung JD, Park H-W et al (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369–1379. doi:10.1007/s00299-006-0196-4

    Article  CAS  PubMed  Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF et al (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90. doi:10.1016/j.ympev.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  • Clifton SW, Minx P, Fauron CM et al (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503. doi:10.1104/pp.104.044602.3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M (1985) The mutation buffering concept of biomolecular structure. J Biosci 8:669–679

    Article  CAS  Google Scholar 

  • Conte M, López M, Lichtenstein G, Carrari F (2013) Mitochondrial and ripening transcriptome analyses during tomato fruit development and ripening. In: 8th International Conference for Plant Mitochondrial Biology ICPMB 2013. Rosario, Argentina

    Google Scholar 

  • Correns VCL (1908) Vererbungsversuche mit blass(gelb)grtinen und buntblittrigen Sippen bei Mirabilisjalapa, Urtica pilulifera und. Lunaria annua. Zeitschrift für Induktive Abstammungs und Vererbungslehre 1:291–329

    Google Scholar 

  • Cui L, Veeraraghavan N, Richter A et al (2006) Chloroplast DB: the chloroplast genome database. Nucleic Acids Res 34:D692–D696. doi:10.1093/nar/gkj055

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lee S-B, Grevich J et al (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. TAG Theor Appl Genet 112:1503–1518. doi:10.1007/s00122-006-0254-x

    Article  CAS  PubMed  Google Scholar 

  • Darracq A, Varré J-S, Touzet P (2010) A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genom 11:233. doi:10.1186/1471-2164-11-233

    Article  CAS  Google Scholar 

  • De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583

    Google Scholar 

  • Denovan-Wright EM, Nedelcu AM, Lee RW (1998) Complete sequence of the mitochondrial DNA of Chlamydomonas eugametos. Plant Mol Biol 36:285–295

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  CAS  PubMed  Google Scholar 

  • Du Jardin P (1990) Homologies to plastid DNA in the nuclear and mitochondrial genomes of potato. Theor Appl Genet 79:807–812. doi:10.1007/BF00224249

    Article  PubMed  Google Scholar 

  • Eberhard S, Drapier D, Wollman F-A (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J Cell Mol Biol 31:149–160

    Article  CAS  Google Scholar 

  • Egea I, Bian W, Barsan C et al (2011) Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Ann Bot 108:291–297. doi:10.1093/aob/mcr140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Lee RW (2002) Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA molecules with homologous inverted repeat Termini. Mol Biol Evol 19:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Fauron C, Casper M (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet TIG 11:228–235

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fleischmann TT, Scharff LB, Alkatib S et al (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23:3137–3155. doi:10.1105/tpc.111.088906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibor A, Granick S (1964) Plastids and mitochondria: inheritable systems: do plastids and mitochondria contain a chromosome which controls their multiplication and development? Science 145:890–897. doi:10.1126/science.145.3635.890

    Article  CAS  PubMed  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505. doi:10.1093/molbev/msg159

    Article  CAS  PubMed  Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22:1813–1822. doi:10.1093/molbev/msi173

    Article  CAS  PubMed  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110. doi:10.1093/molbev/msn226

    Article  CAS  PubMed  Google Scholar 

  • Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687

    Article  CAS  PubMed  Google Scholar 

  • Gray RE, Law RHP, Devenish RJ, Nagley P (1996) Allotopic expression of mitochondrial ATP synthase genes in nucleus of Saccharomyces cerevisiae. In: Attardi GM, Chomyn A (eds) Mitochondrial biogenesis and genetics, part B. Academic Press, London, pp 369–389

    Chapter  Google Scholar 

  • Gualberto JM, Wintz H, Weil JH, Grienenberger JM (1988) The genes coding for subunit 3 of NADH dehydrogenase and for ribosomal protein S12 are present in the wheat and maize mitochondrial genomes and are co-transcribed. Mol Gen Genet MGG 215:118–127

    Article  CAS  PubMed  Google Scholar 

  • Guilliermond A, Atkinson LMR (1941) The cytoplasm of the plant cell. In: Frans Verdoorn (ed) A new series of plant science books

    Google Scholar 

  • Guo X, Castillo-Ramírez S, González V et al (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. BMC Genom 8:228. doi:10.1186/1471-2164-8-228

    Article  CAS  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048. doi:10.1093/emboj/16.13.4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris WM, Spurr AR (1969) Chromoplasts of tomato fruits. II. The red tomato. Am J Bot 56:380–389

    Article  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834. doi:10.1371/journal.pgen.1000834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, et al. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217(2–3):185–194

    Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim RIH, Azuma J-I, Sakamoto M (2006) Complete nucleotide sequence of the cotton (Gossypium barbadense L.) chloroplast genome with a comparative analysis of sequences among 9 dicot plants. Genes Genet Syst 81:311–321

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Senalik D, Szklarczyk M et al (2012) De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol 12:61. doi:10.1186/1471-2229-12-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C et al (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32. doi:10.1186/1471-2148-6-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M et al (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce PBM, Gray MW (1988) Nucleotide sequence of a wheat mitochondrial glutamine tRNA gene. Nucleic Acids Res 16:1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874. doi:10.1105/tpc.107.055202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63:194–207. doi:10.1007/s00239-005-0254-5

    Article  CAS  PubMed  Google Scholar 

  • Kajander OA, Rovio AT, Majamaa K et al (2000) Human mtDNA sublimons resemble rearranged mitochondrial genomes found in pathological states. Hum Mol Genet 9:2821–2835. doi:10.1093/hmg/9.19.2821

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, Hirai A (1994) Reversible changes in the composition of the population of mtdnas during dedifferentiation and regeneration in tobacco. Genetics 138:865–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Kaneko T, Sato S et al (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748. doi:10.1098/rstb.2009.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K-J, Lee H-L (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Jung JD, Lee J-A et al (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25:334–340. doi:10.1007/s00299-005-0097-y

    Article  CAS  PubMed  Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138. doi:10.1146/annurev.arplant.043008.092119

    Article  CAS  PubMed  Google Scholar 

  • Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159. doi:10.1007/s00294-006-0082-1

    Article  CAS  PubMed  Google Scholar 

  • Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J Cell Mol Biol 44:237–244. doi:10.1111/j.1365-313X.2005.02533.x

    Article  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A et al (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic acids research 28:2571–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugita M (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:716–721. doi:10.1093/nar/gkg155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev MMBR 64:786–820

    Article  CAS  PubMed  Google Scholar 

  • Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89. doi:10.1038/nature01909

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin EV, Duvick DN, Newton KJ (2005) A mitochondrial mutator system in maize. Plant Physiol 137:779–789. doi:10.1104/pp.104.053611.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leaver CJ, Gray MW (1982) Mitochondrial genome organization and expression in higher plants. Annu Rev Plant Physiol 33:373–402. doi:10.1146/annurev.pp.33.060182.002105

    Article  CAS  Google Scholar 

  • Lee S-B, Kaittanis C, Jansen RK et al (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genom 7:61. doi:10.1186/1471-2164-7-61

    Article  CAS  Google Scholar 

  • Lee H-L, Jansen RK, Chumley TW, Kim K-J (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180. doi:10.1093/molbev/msm036

    Article  CAS  PubMed  Google Scholar 

  • Legen J, Kemp S, Krause K et al (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J Cell Mol Biol 31:171–188

    Article  CAS  Google Scholar 

  • Lemieux C, Otis C, Turmel M (2007) A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol 5:2. doi:10.1186/1741-7007-5-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lerbs-Mache S (2000) Regulation of rDNA transcription in plastids of higher plants. Biochimie 82:525–535

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang B, Liu Y, Qiu Y-L (2009) The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 68:665–678. doi:10.1007/s00239-009-9240-7

    Article  CAS  PubMed  Google Scholar 

  • Lopez JV, Yuhki N, Masuda R et al (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190

    CAS  PubMed  Google Scholar 

  • Ma P-F, Guo Z-H, Li D-Z (2012) Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. PLoS One 7:e30297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulis L, Bermudes D (1985) Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis (Philadelphia, PA) 1:101–124

    CAS  Google Scholar 

  • Marienfeld J, Unseld M, Brennicke A (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci 4:495–502

    Article  PubMed  Google Scholar 

  • Martin W, Stoebe B, Goremykin V et al (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165. doi:10.1038/30234

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Zapater JM, Gil P, Capel J, Somerville CR (1992) Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell 4:889–899. doi:10.1105/tpc.4.8.889

    Article  PubMed  PubMed Central  Google Scholar 

  • Maul JE, Lilly JW, Cui L et al (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679. doi:10.1105/tpc.006155.present

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mereschkowski C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Moore MJ, Dhingra A, Soltis PS et al (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6:17. doi:10.1186/1471-2229-6-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nägeli C (1846) Über Polysiphonia und Herposiphonia. Zeitschrift für wissenschaftliche Botanik 4:207–256

    Google Scholar 

  • Nass S, Nass MM (1963) Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments. J Cell Biol 19:613–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedelcu AM, Lee RW, Lemieux C et al (2000) The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10:819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Notsu Y, Masood S, Nishikawa T et al (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics MGG 268:434–445. doi:10.1007/s00438-002-0767-1

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Yamato K, Ohta E et al (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ogihara Y, Isono K, Kojima T et al (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics MGG 266:740–746. doi:10.1007/s00438-001-0606-9

    Article  CAS  PubMed  Google Scholar 

  • Ogihara Y, Yamazaki Y, Murai K et al (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33:6235–6250. doi:10.1093/nar/gki925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama K (1996) Chloroplast and mitochondrial genomes from a liverwort, Marchantia polymorpha: gene organization and molecular evolution. Biosci Biotechnol Biochem 60:16–24

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T et al (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574. doi:10.1038/322572a0

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (1996) Size and structure of replicating mitochondrial DNA in cultured tobacco cells. Plant Cell 8:447–461. doi:10.1105/tpc.8.3.447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JD (1991) CHAPTER 2—plastid chromosomes: structure and evolution. In: Molecular The (ed) Plastids IVBT-TMB of biology of plastids. Academic Press, London, pp 5–53

    Chapter  Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JD, Adams KL, Cho Y et al (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97:6960–6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfannschmidt T, Nilsson A, Tullberg A et al (1999) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48:271–276. doi:10.1080/713803507

    Article  CAS  PubMed  Google Scholar 

  • Phillips AL (1985) Restriction map and clone bank of tomato plastid DNA. Curr Genet 10:147–152

    Article  CAS  Google Scholar 

  • Pichersky E, Tanksley SD (1988) Chloroplast DNA sequences integrated into an intron of a tomato nuclear gene. Mol Gen Genet 215:65–68

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Logsdon JM, McGrath JM, Stasys RA (1991) Fragments of plastid DNA in the nuclear genome of tomato: prevalence, chromosomal location, and possible mechanism of integration. Mol Gen Genet 225:453–458

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B, Imlay KRC, Gruissem W (1985) Plastid gene expression during fruit ripening in tomato. Plant Mol Biol 5:373–384

    Article  CAS  PubMed  Google Scholar 

  • Pombert J-F, Otis C, Lemieux C, Turmel M (2004) The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) highlights distinctive evolutionary trends in the chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae. Mol Biol Evol 21:922–935. doi:10.1093/molbev/msh099

    Article  CAS  PubMed  Google Scholar 

  • Pombert J-F, Lemieux C, Turmel M (2006) The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol 4:3. doi:10.1186/1741-7007-4-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popescu CE, Lee RW (2007) Mitochondrial genome sequence evolution in Chlamydomonas. Genetics 175:819–826. doi:10.1534/genetics.106.063156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raubeson LA, Peery R, Chumley TW et al (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8:174. doi:10.1186/1471-2164-8-174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ris H, Plaut W (1962) Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol 13:383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivarola M, Foster JT, Chan AP et al (2011) Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS One 6:e21743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbens S, Derelle E, Ferraz C et al (2007) The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Mol Biol Evol 24:956–968. doi:10.1093/molbev/msm012

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Moreno L, González VM, Benjak A et al (2011) Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genom 12:424. doi:10.1186/1471-2164-12-424

    Article  CAS  Google Scholar 

  • Rogalski M, Schöttler MA, Thiele W et al (2008) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237. doi:10.1105/tpc.108.060392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosso SW (1968) The ultrastructure of chromoplast development in red tomatoes. J Ultrastruct Res 25:307–322

    Article  CAS  PubMed  Google Scholar 

  • Ruhlman T, Lee S-B, Jansen RK et al (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genom 7:222. doi:10.1186/1471-2164-7-222

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakamoto W, Tan S-H, Murata M, Motoyoshi F (1997) An unusual mitochondrial atp9-rpl16 cotranscript found in the maternal distorted leaf mutant of Arabidopsis thaliana: implication of GUG as an initiation codon in plant mitochondria. Plant Cell Physiol 38:975–979

    Article  CAS  PubMed  Google Scholar 

  • Saski C, Lee S-B, Daniell H et al (2005) Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322. doi:10.1007/s11103-005-8882-0

    Article  CAS  PubMed  Google Scholar 

  • Saski C, Lee S-B, Fjellheim S et al (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. TAG Theor Appl Genet 115:571–590. doi:10.1007/s00122-007-0567-4

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T et al (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    Article  CAS  PubMed  Google Scholar 

  • Schatz G, Haslbrunner E, Tuppy H (1964) Deoxyribonucleic acid associated with yeast mitochondria. Biochem Biophys Res Commun 15:127–132

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EW (1913) Pflanzliche Mitochondrien. Progressus rei botanicae 4:164–183

    Google Scholar 

  • Schmitz-Linneweber C, Regel R, Du TG et al (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Schön A, Krupp G, Gough S et al (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284

    Article  PubMed  Google Scholar 

  • Scott NS, Timmis JN (1984) Homologies between nuclear and plastid DNA in spinach. Theor Appl Genet 67:279–288

    Article  CAS  PubMed  Google Scholar 

  • Sharma MR, Wilson DN, Datta PP et al (2007) Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci USA 104:19315–19320. doi:10.1073/pnas.0709856104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T, Kaneko H, Nakata S et al (1998) Mitochondrial genome structure of a cytoplasmic hybrid between tomato and wild potato. Plant Cell Rep 17:832–836. doi:10.1007/s002990050493

    Article  CAS  Google Scholar 

  • Shikanai T, Shimizu K, Ueda K et al (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Lee RW (2008) Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. Mol Biol Evol 25:487–496. doi:10.1093/molbev/msm245

    Article  CAS  PubMed  Google Scholar 

  • Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian bluegum, Eucalyptus globulus (Myrtaceae). DNA Res 12:215–220. doi:10.1093/dnares/dsi006

    Article  CAS  PubMed  Google Scholar 

  • Stern DB, Palmer JD (1984) Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci USA 81:1946–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stutzt B, Noll H (1967) Polysomies in plants: evidence for three classes of ribosomal RNA in nature. Proc Natl Acad Sci USA 57:774–781

    Article  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. In: Schilperoort R, Dure L (eds) 10 Years plant molecular biology. Springer, Netherlands, pp 149–168

    Chapter  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M et al (2004) Timing of tRNA gene transfer from chloroplast to mitochondrion revealed by genomic analysis of dicotyledonous plant mitochondria. Endocytobiosis Cell Res 15:77–86

    Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M et al (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants—supp info. Mol Genet Genomics 272:303–315

    Article  CAS  Google Scholar 

  • Sun Q, Wang K, Yoshimura A, Doi K (2002) Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). TAG Theor Appl Genet 104:1335–1345. doi:10.1007/s00122-002-0878-4

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Oikawa K, Ohta N et al (1996) Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science (New York, NY) 272:1932–1935

    Article  CAS  Google Scholar 

  • Taylor DR, Olson MS, McCauley DE (2001) A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics 158:833–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y et al (2007) The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 24:699–709. doi:10.1093/molbev/msl198

    Article  CAS  PubMed  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. doi:10.1038/nature11119

    Article  CAS  Google Scholar 

  • Thorsness PE, Weber ER (1996) Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol 165:207–234

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Zheng J, Hu S (2006) The rice mitochondrial genomes and their variations. Plant Physiol 140:401–410. doi:10.1104/pp.105.070060.Palmer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiller N, Weingartner M, Thiele W et al (2012) The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins. Plant J Cell Mol Biol 69:302–316. doi:10.1111/j.1365-313X.2011.04791.x

    Article  CAS  Google Scholar 

  • Timmis JN, Scot SN (1983) Sequence homology between spinach nuclear and chloroplast genomes. Nature 305:65–67

    Article  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135. doi:10.1038/nrg1271

    Article  CAS  PubMed  Google Scholar 

  • Tullberg A, Alexciev K, Pfannschmidt T, Allen JF (2000) Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Plant Cell Physiol 41:1045–1054. doi:10.1093/pcp/pcd031

    Article  CAS  PubMed  Google Scholar 

  • Turmel M, Lemieux C, Burger G et al (1999a) The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Plant Cell 11:1717–1730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel M, Otis C, Lemieux C (1999b) The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96:10248–10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002a) The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol 19:24–38

    Article  CAS  PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002b) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280. doi:10.1073/pnas.162203299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903. doi:10.1105/tpc.013169.these

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S et al (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakasugi T, Nagai T, Kapoor M et al (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94:5967–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallin IE (1923) The University of Chicago. Am Nat 57:255–261

    Article  Google Scholar 

  • Wang B, Xue J, Li L et al (2009) The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Curr Genet 55:601–609. doi:10.1007/s00294-009-0273-7

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Rousseau-Gueutin M, Timmis JN (2012) Plastid sequences contribute to some plant mitochondrial genes. Mol Biol Evol 29:1707–1711. doi:10.1093/molbev/mss016

    Article  CAS  PubMed  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Article  CAS  PubMed  Google Scholar 

  • Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10:59–65

    Article  CAS  PubMed  Google Scholar 

  • Woloszynska M, Kieleczawa J, Ornatowska M et al (2001) The origin and maintenance of the small repeat in the bean mitochondrial genome. Mol Genet Genomics 265:865–872. doi:10.1007/s004380100481

    Article  CAS  PubMed  Google Scholar 

  • Xue J-Y, Liu Y, Li L et al (2010) The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr Genet 56:53–61. doi:10.1007/s00294-009-0279-1

    Article  CAS  PubMed  Google Scholar 

  • Yamato KT, Newton KJ (1999) Heteroplasmy and homoplasmy for maize mitochondrial mutants: a rare homoplasmic nad4 deletion mutant plant. J Hered 90:369–373. doi:10.1093/jhered/90.3.369

    Article  Google Scholar 

  • Yu Q, Tong E, Skelton RL et al (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genom 10:371. doi:10.1186/1471-2164-10-371

    Article  CAS  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics MGG 275:367–373. doi:10.1007/s00438-005-0092-6

    Article  CAS  PubMed  Google Scholar 

  • Zheng L-Y, Guo X-S, He B et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114. doi:10.1186/gb-2011-12-11-r114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Carrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lichtenstein, G., Conte, M., Asis, R., Carrari, F. (2016). Chloroplast and Mitochondrial Genomes of Tomato. In: Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M. (eds) The Tomato Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53389-5_7

Download citation

Publish with us

Policies and ethics