Skip to main content

Complexity and Optimality of the Best Response Algorithm in Random Potential Games

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9928))

Included in the following conference series:

Abstract

In this paper we compute the worst-case and average execution time of the Best Response Algorithm (BRA) to compute a pure Nash equilibrium in finite potential games. Our approach is based on a Markov chain model of BRA and a coupling technique that transform the average execution time of this discrete algorithm into the solution of an ordinary differential equation. In a potential game with N players and A strategies per player, we show that the worst case complexity of BRA (number of moves) is exactly \(N A^{N-1}\), while its average complexity over random potential games is equal to \(e^\gamma N + O(N)\), where \(\gamma \) is the Euler constant. We also show that the effective number of states visited by BRA is equal to \(\log N + c + O(1/N)\) (with \( c \leqslant e^\gamma \)), on average. Finally, we show that BRA computes a pure Nash Equilibrium faster (in the strong stochastic order sense) than any local search algorithm over random potential games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daskalakis, P.G.C., Papadimitriou, C.: The complexity of computing a nash equilibrium. SIAM J. Comput. 39(3), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckman, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  4. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multi user communication networks. IEEE/ACM Trans. Netw. 1(5), 510–521 (1993)

    Article  Google Scholar 

  5. Gallager, R.G.: A minimum delay routing algorithm using distributed computation. IEEE Trans. Commun. 25(1), 73–85 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wardrop, J.: Some theoretical aspects of road traffic research, part ii. In: Proceedings of the Institute of Civil Engineers, vol. 1, pp. 325–378 (1954)

    Google Scholar 

  7. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  8. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, ser. (STOC 2004), pp. 604–612. ACM (2004)

    Google Scholar 

  9. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. In: FOCS 2006, pp. 613–622 (2006)

    Google Scholar 

  10. Nash, J.: Equilibrium points in n-person game. Proc. Nat. Acad. Sci. 38, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  12. Babichenko, Y., Tamuz, O.: Graphical potential games. arXiv.org, Tech. Rep.: 1405.1481v2

    Google Scholar 

  13. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)

    Google Scholar 

  14. Feldman, M., Tamir, T.: Convergence of best-response dynamics in games with conflicting congestion effects. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 496–503. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Imre, B., Vempala, S., Vetta, A.: Nash equilibria in random games. Random Structures Algorithms 31(4), 391–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rinott, Y., Scarsini, M.: On the number of pure strategy nash equilibria in random games. Games Econ. Behav. 33(2), 274–293 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Durand, S., Gaujal, B.: Complexity, optimality of the best response algorithm in random potential games. Inria, Research Report RR-8925 (2016). https://hal.inria.fr/hal-01330805

  18. Voorneveld, M.: Best-response potential games. Econ. Lett. 66(3), 289–295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Series in Probability and Statistics. Wiley, Chichester (2002)

    MATH  Google Scholar 

Download references

Acknowledgement

This work was partially supported by LabEx Persyval-Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Gaujal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, S., Gaujal, B. (2016). Complexity and Optimality of the Best Response Algorithm in Random Potential Games. In: Gairing, M., Savani, R. (eds) Algorithmic Game Theory. SAGT 2016. Lecture Notes in Computer Science(), vol 9928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53354-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53354-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53353-6

  • Online ISBN: 978-3-662-53354-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics