Skip to main content

Lipschitz Continuity and Approximate Equilibria

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9928))

Included in the following conference series:

Abstract

In this paper, we study games with continuous action spaces and non-linear payoff functions. Our key insight is that Lipschitz continuity of the payoff function allows us to provide algorithms for finding approximate equilibria in these games. We begin by studying Lipschitz games, which encompass, for example, all concave games with Lipschitz continuous payoff functions. We provide an efficient algorithm for computing approximate equilibria in these games. Then we turn our attention to penalty games, which encompass biased games and games in which players take risk into account. Here we show that if the penalty function is Lipschitz continuous, then we can provide a quasi-polynomial time approximation scheme. Finally, we study distance biased games, where we present simple strongly polynomial time algorithms for finding best responses in \(L_1\), \(L_2^2\), and \(L_\infty \) biased games, and then use these algorithms to provide strongly polynomial algorithms that find 2/3, 5/7, and 2/3 approximations for these norms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azrieli, Y., Shmaya, E.: Lipschitz games. Math. Oper. Res. 38(2), 350–357 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babichenko, Y.: Best-reply dynamics in large binary-choice anonymous games. Games Econ. Behav. 81, 130–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babichenko, Y., Barman, S., Peretz, R.: Simple approximate equilibria in large games. In: Proceeding of EC, pp. 753–770 (2014)

    Google Scholar 

  4. Barman, S.: Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Caratheodory’s theorem. In: Proceeding of STOC 2015, pp. 361–369 (2015)

    Google Scholar 

  5. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria in bimatrix games. Theor. Comput. Sci. 411(1), 164–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caragiannis, I., Kurokawa, D., Procaccia, A.D.: Biased games. In: Proceeding of AAAI, pp. 609–615 (2014)

    Google Scholar 

  7. Chapman, G.B., Johnson, E.J.: Anchoring, activation, and the construction of values. Organ. Behav. Hum. Decis. Process. 79(2), 115–153 (1999)

    Article  Google Scholar 

  8. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash equilibria. In: Proceeding of EC, pp. 355–358 (2007)

    Google Scholar 

  11. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equilibria. Theor. Comput. Sci. 410(17), 1581–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous games. J. Econ. Theory (2014, to appear)

    Google Scholar 

  13. Deb, J., Kalai, E.: Stability in large Bayesian games with heterogeneous players. J. Econ. Theor. 157(C), 1041–1055 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiat, A., Papadimitriou, C.H.: When the players are not expectation maximizers. In: SAGT, pp. 1–14 (2010)

    Google Scholar 

  15. Kahneman, D.: Reference points, anchors, norms, and mixed feelings. Organ. Behav. Hum. Decis. Process. 51(2), 296–312 (1992)

    Article  Google Scholar 

  16. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: EC, pp. 36–41 (2003)

    Google Scholar 

  17. Mavronicolas, M., Monien, B.: The complexity of equilibria for risk-modeling valuations. CoRR, abs/1510.08980 (2015)

    Google Scholar 

  18. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rubinstein, A.: Settling the complexity of computing approximate two-player nash equilibria. CoRR, abs/1606.04550 (2016)

    Google Scholar 

  21. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilibria. Internet Math. 5(4), 365–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Science 185(4157), 1124–1131 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argyrios Deligkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deligkas, A., Fearnley, J., Spirakis, P. (2016). Lipschitz Continuity and Approximate Equilibria. In: Gairing, M., Savani, R. (eds) Algorithmic Game Theory. SAGT 2016. Lecture Notes in Computer Science(), vol 9928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53354-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53354-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53353-6

  • Online ISBN: 978-3-662-53354-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics