Skip to main content

Component Modeling with State-Space Method

  • Chapter
  • First Online:
Modeling and Control in Air-conditioning Systems

Part of the book series: Energy and Environment Research in China ((EERC))

  • 1330 Accesses

Abstract

A state-space representation, also known as the ‘time-domain approach’, is a mathematical model of a physical system as a set of input, output, and state variables related to first-order differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hangos, K.M., Lakner, R., Gerzson, M.: Intelligent Control Systems: An Introduction with Examples. Springer, Berlin (2001)

    Google Scholar 

  2. Hangos, K.M., Bokor, J., Szederkényi, G.: Analysis and Control of Nonlinear Process Systems. Springer, Berlin (2004)

    Google Scholar 

  3. Brogan, W.L.: Modern Control Theory (1st edn). Quantum Publishers Inc. (1974)

    Google Scholar 

  4. http://en.wikipedia.org/wiki/State-space_representation

  5. ASHRAE. ASHRAE Handbook: Heating, Ventilating, and Air-conditioning Systems and Equipment (SI Edition). Atlanta (USA), GA (2004)

    Google Scholar 

  6. Yao, Y., Huang, M., Mo, J., Dai, S.: State-space model for transient behavior of water-to-air surface heat exchanger. Int. J. Heat Mass Transf. 66(9), 173–192 (2013)

    Article  Google Scholar 

  7. Vaisi, A., Talebi, S., Esmaeilpour, M.: Transient behavior simulation of fin-and-tube heat exchangers for the variation of the inlet temperatures of both fluids. Int. Commun. Heat Mass Transfer 38(5), 951–957 (2011)

    Article  Google Scholar 

  8. ASHRAE. ASHRAE Handbook—Fundamentals, Chap. 6. Atlanta (USA), GA (2005)

    Google Scholar 

  9. Yao, Y., Huang, M., Chen, J.: State-space model for dynamic behavior of vapor compression liquid chiller. Int. J. Refrig. 36(8), 2128–2147 (2013)

    Article  Google Scholar 

  10. Browne, M.W., Bansal, P.K.: An elemental NTU-ε model for vapour-compression liquid chillers. Int. J. Refrig. 24(5), 612–627 (2001)

    Article  Google Scholar 

  11. Chan, C.Y., Haselden, G.G.: Computer-based refrigerant thermodynamic properties, part 1: basic equations. Int. J. Refrig. 4(1), 7–12 (1981)

    Article  Google Scholar 

  12. Chan, C.Y., Haselden, G.G.: Computer-based refrigerant thermodynamic properties, part 2: program listings. Int. J. Refrig. 4(1), 52–60 (1981)

    Article  Google Scholar 

  13. Su, C.: Advanced Engineering Thermodynamics. Higher Education Press (HEP), Beijing (1987)

    Google Scholar 

  14. Lemmon, E.W., McLinden, M.O., Huber, M.L.: NIST Reference Fluid Thermodynamic and Transport Properties—REFPRO Users’ Guide (version 7.0). National Institute of Standards and Technology (2002)

    Google Scholar 

  15. Zhang, X.M., Ren, Z.F.: Heat Transfer. China Architecture & Building Press, Beijing (2006)

    Google Scholar 

  16. Badescu, V.: Dynamic model of a complex system including PV cells, electric battery, electrical motor and water pump. Energy 28, 1165–1181 (2003)

    Article  Google Scholar 

  17. Yao, Y., Yang, K., Huang, M.: A state-space model for dynamic response of indoor air temperature and humidity. Build. Environ. 64(6), 26–37 (2013)

    Article  Google Scholar 

  18. Inard, C., Bouia, H., Dalicieux, P.: Prediction of air temperature distribution in buildings with a zonal model. Energy Build. 24(2), 125–132 (1996)

    Article  Google Scholar 

  19. Peng, X., van Paassen, A.H.C.: A state space model for predicting and controlling the temperature responses of indoor air zones. Energy Build. 28(1), 197–203 (1998)

    Article  Google Scholar 

  20. Liu, W., Lian, Z., Yao, Y.: Optimization on indoor air diffusion of floor-standing type room air-conditioners. Energy Build. 40(2), 59–70 (2008)

    Article  Google Scholar 

  21. Gao, J., Zhang, X., Zhao, J.N., Gao, F.S.: A heat transfer parameter at air interfaces in the BLOCK model for building thermal environment. Int. J. Therm. Sci. 49(2), 463–470 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Yao, Y., Yu, Y. (2017). Component Modeling with State-Space Method. In: Modeling and Control in Air-conditioning Systems. Energy and Environment Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53313-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53313-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53311-6

  • Online ISBN: 978-3-662-53313-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics