Skip to main content

Modeling and Control Strategies for VAV Systems

  • Chapter
  • First Online:
Modeling and Control in Air-conditioning Systems

Part of the book series: Energy and Environment Research in China ((EERC))

  • 1279 Accesses

Abstract

In a heating, ventilating, and air-conditioning (HVAC) system, operation of the air-side system has a significant influence on the overall performance of a building energy system. For example, in a worst-case scenario instability in the air-side economizer could trigger instability at the central chilled water plant or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urban, R.A.: Design considerations and operating characteristics of variable volume systems. ASHRAE J. 12(2), 77–84 (1969)

    Google Scholar 

  2. Shepherd, K.: VAV Air Conditioning Systems. Blackwell Science Ltd, United Kingdom (1999)

    Google Scholar 

  3. ASHRAE Handbook. HVAC Systems and Equipment [Chapter 4]. In Air Handling and Distribution. American Society of Heating, Refrigerating and Air conditioning Engineers Inc, Atlanta (2008) (4.11)

    Google Scholar 

  4. Dodd, M.: Comparing Energy Savings of Different VAV Systems, pp. 1–9. EnergySoft LLC (2012)

    Google Scholar 

  5. Bearg, D.W.: Indoor Air Quality and HVAC Systems. Lewis Publishers (1993)

    Google Scholar 

  6. Engdahl, F., Johansson, D.: Optimal supply air temperature with respect to energy use in a variable air volume system. J. Energy Build. 36, 205–218 (2004)

    Article  Google Scholar 

  7. Tung, D., Deng, S.: Variable air volume system under reduced static pressure control. Build. Serv. Eng. Res. Technol. 18(2), 77–83 (1997)

    Article  Google Scholar 

  8. Inoue, U., Matsumoto, T.: A study on energy savings with variable air volume systems by simulation and field measurement. J. Energy Build. 2, 27–36 (1979)

    Article  Google Scholar 

  9. Kloostra, L.: VAV systems save 38 % of energy use. Heating Pip. Air Conditioning 51(12), 61–63 (1979)

    Google Scholar 

  10. Mull, T.E.: Energy conservation measures for air distribution and HVAC systems. J. Plant Eng. 58(10), 60–64 (2004)

    Google Scholar 

  11. Mysen, M., Rydock, I.P., Tjelflaat, P.O.: Demand controlled ventilation for office cubicles-can it be profitable? J. Energy Build. 35, 657–662 (2003)

    Article  Google Scholar 

  12. Norford, L.K., Rabl, A., Socolow, R.H.: Control of supply air temperature and outdoor airflow and its effect on energy use in a variable air volume system. ASHRAE Trans. 92, 30–45 (1986)

    Google Scholar 

  13. Wang, S., Burnett, J.: Variable-air-volume air-conditioning systems: optimized static pressure setpoint. J. Build. Serv. Eng. Res. Technol. 19(4), 219–231 (1998)

    Article  Google Scholar 

  14. Khoo, I., Levermore, G.J., Letherman, K.M.: Variable-air-volume terminal units I: steady state models. J. Build. Serv. Eng. Res. Technol. 19(3), 155–162 (1998)

    Article  Google Scholar 

  15. Parameshwaran, R., Karunakaran, R., Iniyan, S., Anand, A.S.: Optimization of energy conservation potential for VAV air conditioning system using Fuzzy based genetic algorithm. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2(1), 67–74 (2008)

    Google Scholar 

  16. ANSI/ASHRAE/IESNA. Standard 90.1-2010 Energy standard for buildings except low-rise residential buildings. International Code Council, Inc., Washington, D.C. and American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA (2010)

    Google Scholar 

  17. Yu, Y., Liu, M., Cho, Y., Xu, K.: Integrated demand controlled ventilation for single duct VAV system with conference rooms. In: Proceedings of ICEBO, California (2007)

    Google Scholar 

  18. Yu, Y., Xu, K., Cho, Y.H., Liu, M.: A smart logic for conference room terminal box of single duct VAV system. In: Proceedings of the 7th International Conference for Enhanced Building Operations. San Francisco, CA (2007)

    Google Scholar 

  19. Cho, Y.H.: Development of a terminal control system with variable minimum airflow rate. Energies 5, 4643–4664 (2012)

    Article  Google Scholar 

  20. Hartman, T.: TRAV—A new HVAC concept. Heating/Piping/Air Conditioning Eng. HPAC 61(7), 69–73 (1989)

    Google Scholar 

  21. Hartman, T.: Terminal regulated air volume (TRAV) systems. ASHRAE Trans. 99(1), 791–800 (1993)

    Google Scholar 

  22. Hartman, T.: Global optimization strategies for high-performance controls. ASHRAE Trans. 101(2), 679–687 (1995)

    Google Scholar 

  23. Englander S.: Ventilation Control for Energy Conservation: Digitally Controlled Terminal Boxes and Variable Speed Drives. Princeton University (1990)

    Google Scholar 

  24. Englander, S.L., Norford, L.K.: Saving fan energy in VAV systems—Part 2: supply fan control for static pressure minimization using DDC zone feedback. ASHRAE Trans. 98(1), 19–32 (1992)

    Google Scholar 

  25. Warren, M., Norford, L.K.: Integrating VAV zone requirements with supply fan operation. ASHRAE J. 35(4), 43–46 (1993)

    Google Scholar 

  26. Wei, G.H., Liu, M.S., Claridge, D.E., Sakurai, Y.: Improved air volume control logic for VAV systems. In: Proceedings of the Twelfth Symposium on Improving Building Systems in Hot and Humid Climates. San Antonio, TX, May 15–17 (2000)

    Google Scholar 

  27. Nassif, N., Moujaes, S.: A new operating strategy for economizer dampers of VAV system. J. Energy Build. 40, 289–299 (2008)

    Article  Google Scholar 

  28. Haasl, T., Potter, A., Irvine, L., Luskay, L.: Retro-commissioning’s greatest hits. In: Proceedings of the 1st International Conference for Enhanced Building Operations, Austin, TX (2001). http://esl.eslwin.tamu.edu/digital-library.html

  29. Song, L.I., Joo, D., Dong, M., Liu, J., Wang, K., Hansen, L.Q., Swiatek, A.: Optimizing HVAC control to improve building comfort and energy performance. In: Proceedings of the 3rd International Conference for Enhanced Building Operations. Berkeley, CA (2003). http://esl.eslwin.tamu.edu/digital-library.html

  30. Pang, X., Zheng, B., Liu, M.: Case study of continuous commissioning in an office building. In: Proceedings of the 6th International Conference for Enhanced Building Operations. Shenzhen, China (2006). http://esl.eslwin.tamu.edu/digital-library.html

  31. Liu, M.: Variable speed drive volumetric tracking (VSDVT) for airflow control in variable air volume (VAV) systems. J. Sol. Energy Eng. 125, 318–323 (2003)

    Article  Google Scholar 

  32. Liu, G., Liu, M.: Supply fan control methods for VAV systems using a fan airflow station. ASHRAE Trans. 114(2), 451–457 (2008)

    Google Scholar 

  33. Wu, L., Liu, M., Wang, G., Pang, X.: Integrated static pressure reset with fan airflow station in dual-duct VAV system control. In: Proceedings of the Energy Sustainability Conference 2007, pp. 441–49. Long Beach, CA (2007)

    Google Scholar 

  34. Liu, M., Claridge, D.E., Turner, W.D.: Continuous commissioning guidebook for federal energy managers. Federal Energy Management Program, U.S. Department of Energy, Washington, D.C. (2002). www1.eere.energy.gov/femp/operations_maintenance/om_ccguide.html

  35. Zheng, K., Li, H., Yang, H.: Application of wireless sensor network (WSN) technologies in optimal static pressure reset in variable air volume (VAV) system. In: Proceedings of the 7th International Conference for Enhanced Building Operations. SanFrancisco, CA (2007). http://esl.eslwin.tamu.edu/digital-library.html

  36. Murphy, J.: Ventilation control in terminal units with variable speed fan control. ASHRAE J., 12–19 (2013)

    Google Scholar 

  37. Meng, Q.L., Yan, X.Y., Ren, Q.C.: Global optimal control of VAV air-conditioning system with iterative learning: an experimental case study. J. Zhejiang Univ.-Sci. A (ApplPhys&Eng), 1–21 (2014)

    Google Scholar 

  38. Koulani, C.S.: Optimized damper control of pressure and airflow in ventilation systems. Section of building physics and services department of civil engineering, Technical University of Denmark. Master thesis (2013)

    Google Scholar 

  39. The MathWorks. Simulation and Model-Based Design. Simulink Manual Version 6 (2005). www.mathworks.com

  40. Karris, S.T.: Introduction to Simulink with Engineering Applications, Orchard Publications (2006). www.orchardpublications.com

  41. Zheng, G.R.: Dynamic modeling and global optimal operation of multi-zone variable air volume HVAC system. PHD Thesis, The Center for Building Studies, Concordia University, Montreal, Canada (1997)

    Google Scholar 

  42. White, F.M.: Fluid Mechanics, 3rd edn, p. 736. Mc-Graw Hill, New York (1994)

    Google Scholar 

  43. Brandemuel, M.J., Gabell, S., Andersen, I.: A Toolkit for Secondary HVAC System Energy Calculation. ASHRAE, Joint Center for Energy Management, University of Colorado, Boulder (1993)

    Google Scholar 

  44. Nassif, N.S., Kajl, S., Sabourin, R.: Modeling and validation of existing VAV system components. In: Proceedings of Esim, Canadian Conference on Building Simulation, Vancouver, Canada (2004)

    Google Scholar 

  45. Fans and Pumps. Energy Management Series 13 for Industry and Commercial Institutions, Canada

    Google Scholar 

  46. Colebrook, C.F.: Turbulent flow in the pipe, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 133–156 (1938–1939) (London)

    Google Scholar 

  47. Haaland, S.: Simple and explicit formulas for the friction factor in turbulent flow. Trans. ASME J. Fluids Eng. 103, 89–90 (1983)

    Article  Google Scholar 

  48. McQuiston, F.C., Parker, J.D.: Heating, Ventilating and Air-Conditioning, 3rd edn. Wiley, Hoboken (1988)

    Google Scholar 

  49. Idelchik, I.E.: Handbook of Hydraulic Resistance. Hemisphere Publishing Corporation (1986)

    Google Scholar 

  50. Archer, W.H.: Loss of head due to enlargements in pipes. Trans. Am. Soc. Civ. Eng. 76, 999–1026 (1913)

    Google Scholar 

  51. ASHRAE. HVAC Fundamentals. ASHRAE Handbook (2011)

    Google Scholar 

  52. ANSI/ASHRAE/IESNA Standard 90.1-2010. Energy standard for buildings except low-rise residential buildings. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc, Atlanta (2010)

    Google Scholar 

  53. Yuying, S., Zheng, Z., Hou, X., Tian, P.: AHU control strategies in the VAV system. In: Fourth International Conference on Innovative Computing, Information and Control, pp. 119–123 (2009)

    Google Scholar 

  54. Nelson, R.M., Householder, B.: A study on static pressure reset and instability in variable air volume HVAC systems. Final report, Iowa Energy Center (2011)

    Google Scholar 

  55. Taylor, S.: Resetting set points using trim and respond logic. ASHRAE J., 52–57 (2015)

    Google Scholar 

  56. Taylor, S.: Increasing efficiency with VAV system static pressure setpoint reset. ASHRAE J. 49(6), 24–32 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Yao, Y., Yu, Y. (2017). Modeling and Control Strategies for VAV Systems. In: Modeling and Control in Air-conditioning Systems. Energy and Environment Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53313-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53313-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53311-6

  • Online ISBN: 978-3-662-53313-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics