Skip to main content

Physical Properties of Reservoir Rocks

  • Chapter
  • First Online:
Book cover Physics of Petroleum Reservoirs

Part of the book series: Springer Mineralogy ((MINERAL))

  • 1339 Accesses

Abstract

A rock capable of producing oil, gas, or water is called reservoir rock. A reservoir rock may be any rock with sufficient porosity and permeability to allow oil and gas to accumulate and be produced in commercial quantities [1]. Petroleum generally occurs in sandstones, limestones, dolomites, conglomerates, and shales, but sometimes it is also found in igneous and metamorphic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Daniel N, Lapedes (1978) McGraw-Hill encyclopedia of the geological sciences. Graw-Hill

    Google Scholar 

  2. Cecil GL(1949) Principles of petroleum geology. In: The century earth science series. Appleton-Century-Crofts, Inc., New York

    Google Scholar 

  3. Knut B (2010) Petroleum geoscience: from sedimentary environments to rock physics. Springer, London

    Google Scholar 

  4. Zhu XM (2008) Sedimentary petrography. Petroleum Industry Press, Beijing

    Google Scholar 

  5. http://www.yzrmjx.net/NewsDetail.asp?id=23

  6. http://www.azom.com/article.aspx?ArticleID=1417

  7. Paolo N, Kornelia S (2006) Nucleic acids and proteins in soil. Springer, Berlin

    Google Scholar 

  8. Ruben DK, Nikolaĭ VP, Billy LE (2000) Coastal processes in tideless seas. ASCE Publications

    Google Scholar 

  9. Sam B Jr (2009) Petrology of sedimentary rocks, 2nd edn. Cambridge university press

    Google Scholar 

  10. Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Google Scholar 

  11. Folk RL (1966) A review of grain-size parameters. Sediment 6:73–93

    Google Scholar 

  12. Djebbar T, Erle CD (2012) Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Gulf Professional Publishing, Waltham

    Google Scholar 

  13. Oleg DN, Stanislav N (2009) Handbook of non-ferrous metal powders: technologies and applications. Elsevier, Oxford

    Google Scholar 

  14. Carman PC (1938) The determination of the specific surface of powders. J Soc Chem Ind Trans Commun Lond 57(225)

    Google Scholar 

  15. Evangelos T, Arun SM (2011) Modern drying technology, experimental techniques. Wiley-VCH, Darmstadt

    Google Scholar 

  16. Brunauer S, Emmett PH et al (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Google Scholar 

  17. Jorden JR, Campbell FL(1984) Well logging I—rock properties, borehole environment, mud and temperature logging SPE of AIME

    Google Scholar 

  18. Richard CS (2000) Applied sedimentology. Academic, San Diego

    Google Scholar 

  19. Gary N (2009) Sedimentology and stratigraphy. Wiley-Blackwell, Oxford

    Google Scholar 

  20. Erik F (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer

    Google Scholar 

  21. He GS (1994) Reservoir physics. Petroleum Industry Press, Beijing

    Google Scholar 

  22. Jacob B (1988) Dynamics of fluids in porous media. Courier Dover Publications

    Google Scholar 

  23. SY/T 6285-2011 (2011) Evaluating methods of oil and gas reservoirs (China)

    Google Scholar 

  24. Arville IL, Frederick FB (2001) Geology of petroleum. AAPG Foundation, 2001-6-1

    Google Scholar 

  25. Collins RE (1961) Flow of fluids through porous materials. Reinhold Publishing Corporation, New York

    Google Scholar 

  26. Society of Petroleum Engineers (2004) SPE reservoir evaluation & engineering

    Google Scholar 

  27. Richard A, Schatzinger, John FJ (1999) Reservoir characterization: recent advances. AAPG(71)

    Google Scholar 

  28. Ahr WM (2008) Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. Wiley, New Jersey

    Google Scholar 

  29. Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44:777–779

    Google Scholar 

  30. Christopher H, William DH (2002) Water transport in brick, stone and concrete. Spon Press, London

    Google Scholar 

  31. Paul G (2001) Petrophysics MSc Course Notes.http://www2.ggl.ulaval.ca/personnel/paglover/CD%20Contents/GGL-66565%20Petrophysics%20English/Chapter%202.PDF; http://www2.ggl.ulaval.ca/personnel/paglover/CD%20Contents/GGL-66565%20Petrophysics%20English/Chapter%203.PDF

  32. Carlson MR (2003) Practical reservoir simulation: using, assessing, and developing results. Penn Well Books, Tulsa

    Google Scholar 

  33. Bear J (1972) Dynamics of fluids in porous media. Dover Publications, New York

    Google Scholar 

  34. Yang SL et al (2004) Reservoir physics. Petroleum Industry Press, Beijing

    Google Scholar 

  35. Michael K (2006) Aquifer test data: analysis and evaluation. Water Resources Publication

    Google Scholar 

  36. Tucker ME (2011) Sedimentary rocks in the field: a practical guide. Wiley-Blackwell, Oxford

    Google Scholar 

  37. SY/T 5336-2006 (2006) Practices for core analysis (China)

    Google Scholar 

  38. He GS, Tang H (2011) Reservoir physics. Petroleum Industry Press, Beijing

    Google Scholar 

  39. Tarek A (2010) Reservoir engineering handbook. Gulf Professional Publishing, Burlington

    Google Scholar 

  40. Abdus S, Ghulam MI, James LB (2007) Practical enhanced reservoir engineering: assisted with simulation software. Penn Well Books, Tulsa

    Google Scholar 

  41. Pierre D (2007) Essentials of reservoir engineering. Editions Technip, Paris

    Google Scholar 

  42. Monicard RP (1980) Properties of reservoir rocks: core analysis. Editions Tecnip, Paris

    Google Scholar 

  43. Corelab (1983) Fundamentals of core analysis. Houston, TX

    Google Scholar 

  44. Engler T (2010) Saturation. http://infohost.nmt.edu/~petro/faculty/Engler524/PET524-3a-saturation

  45. Helander DP (1983) Fundamentals of formation evaluation. OGCI Publications, Tulsa

    Google Scholar 

  46. Morris M (1949) Physical principles of oil production. McGraw-Hill Book Co

    Google Scholar 

  47. Henry D, Henry PG (2003) Darcy and other pioneers in hydraulics: contributions in celebration of the 200th birthday of Henry Philibert Gaspard Darcy. Pa. ASCE Publications, Philadelphia

    Google Scholar 

  48. Nalco Chemical Company (1979) The NALCO water handbook. McGraw-Hill

    Google Scholar 

  49. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Drilling and production practice. American Petroleum Inst, pp 200–213

    Google Scholar 

  50. Torsæter O, Abtahi M (2003) Experimental reservoir engineering laboratory work book. http://faculty.ksu.edu.sa/shokir/PGE463/Textbook%20and%20References/Exerimental%20Reservoir%20Engineering%20Laboratory%20Workbook.pdf

  51. Beard DC, Weyl PK (1973) Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin J 57(2):348–369

    Google Scholar 

  52. Faruk C (2011) Reservoir formation damage. Gulf Professional Publishing, Burlington

    Google Scholar 

  53. Amethyst G (2007) The clay mineral group

    Google Scholar 

  54. Collins DR, Catlow CA (1992) Computer simulation of structures and cohesive properties of micas. Am Mineral 77:1172–1181. http://www.swac.umn.edu/classes/soil2125/doc/s11ch1.htm

  55. Carroll D (1959) Ion exchange in clays and other minerals. Geol Soc Am Bull 70:749–779

    Google Scholar 

  56. Ladd CC (1960) Mechanisms of swelling by compacted clay. In: Highway research board bulletin, national research council, vol 245. Washington, DC, pp 10–26

    Google Scholar 

  57. Joerg R, Tobias B, Reiner D, Siegfried S (2011) Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci J63:1545–1564

    Google Scholar 

  58. Shen P (1995) The experimental technique of reservoir physics. Petroleum Industry Press, Beijing

    Google Scholar 

  59. SY/T 5358-2010 (2010) Formation damage evolution by flow test (China)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetao Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Petroleum Industry Press and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, X., Huang, S. (2017). Physical Properties of Reservoir Rocks. In: Hu, X., Hu, S., Jin, F., Huang, S. (eds) Physics of Petroleum Reservoirs. Springer Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53284-3_2

Download citation

Publish with us

Policies and ethics