Skip to main content

Abstract

Transdermal electroporation is an active drug permeation enhancement technique that produces transient aqueous pores in the intercellular lipid matrix of the stratum corneum. The electroporation protocols are efficiently tailored to achieve desired mass transfer into and across the skin, for therapeutic agents ranging from smaller molecules to macromolecules. The potential of transdermal electroporation has been demonstrated through the development of various treatment modalities in several preclinical and clinical studies. The ability of electroporation to administer macromolecules like insulin through the skin could be a potential alternative for subcutaneous injections. Electroporation was also shown to be useful in noninvasive transcutaneous sampling of drugs and diagnostic analytes. The design of electrodes was found to have significant influence on the skin permeabilization and tolerability of electrical protocol. More research needs to be undertaken to optimize the electroporation protocol, and electrode design before transdermal electroporation could be implemented in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Babiuk S, Baca-Estrada M, Babiuk LA, Ewen C, Foldvari M (2000) Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery. J Control Release 66(2–3):199–214

    Article  CAS  PubMed  Google Scholar 

  • Bommannan DB, Tamada J, Leung L, Potts RO (1994) Effect of electroporation on transdermal iontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm Res 11(12):1809–1814

    Article  CAS  PubMed  Google Scholar 

  • Broderick KE, Shen X, Soderholm J, Lin F, McCoy J, Khan AS, Yan J, Morrow MP, Patel A, Kobinger GP, Kemmerrer S, Weiner DB, Sardesai NY (2011) Prototype development and preclinical immunogenicity analysis of a novel minimally invasive electroporation device. Gene Ther 18(3):258–265

    Article  CAS  PubMed  Google Scholar 

  • Byrne CM, Thompson JF, Johnston H, Hersey P, Quinn MJ, Michael Hughes T, McCarthy WH (2005) Treatment of metastatic melanoma using electroporation therapy with bleomycin (electrochemotherapy). Melanoma Res 15(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Hofmann GA, Zhang L, Deftos LJ, Banga AK (2000) The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J Control Release 66(2–3):127–133

    Article  CAS  PubMed  Google Scholar 

  • Denet AR, Preat V (2003) Transdermal delivery of timolol by electroporation through human skin. J Control Release 88(2):253–262

    Article  CAS  PubMed  Google Scholar 

  • Dujardin N, Van Der Smissen P, Preat V (2001) Topical gene transfer into rat skin using electroporation. Pharm Res 18(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Dujardin N, Staes E, Kalia Y, Clarys P, Guy R, Preat V (2002) In vivo assessment of skin electroporation using square wave pulses. J Control Release 79(1–3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Hallengard D, Haller BK, Maltais AK, Gelius E, Nihlmark K, Wahren B, Brave A (2011) Comparison of plasmid vaccine immunization schedules using intradermal in vivo electroporation. Clin Vaccine Immunol 18(9):1577–1581

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao J, Li SK, Liu CY, Kao WW (2009) Electrically assisted delivery of macromolecules into the corneal epithelium. Exp Eye Res 89(6):934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadoul A, Regnier V, Doucet J, Durand D, Preat V (1997) X-ray scattering analysis of human stratum corneum treated by high voltage pulses. Pharm Res 14(9):1275–1277

    Article  CAS  PubMed  Google Scholar 

  • Jadoul A, Tanojo H, Preat V, Bouwstra JA, Spies F, Bodde HE (1998) Electroperturbation of human stratum corneum fine structure by high voltage pulses: a freeze-fracture electron microscopy and differential thermal analysis study. J Investig Dermatol Symp Proc 3(2):153–158

    Article  CAS  PubMed  Google Scholar 

  • Jadoul A, Bouwstra J, Preat VV (1999) Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv Drug Deliv Rev 35(1):89–105

    Article  CAS  PubMed  Google Scholar 

  • Johansson DX, Ljungberg K, Kakoulidou M, Liljestrom P (2012) Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 7(1):e29732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12(4):390–399; quiz 400–1

    PubMed  Google Scholar 

  • Lombry C, Dujardin N, Preat V (2000) Transdermal delivery of macromolecules using skin electroporation. Pharm Res 17(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Zhang S (2008) Electroporation and transcutaneous sampling (ETS) of acyclovir. J Dermatol Sci 49(3):249–251

    Article  CAS  PubMed  Google Scholar 

  • Murthy SS, Kiran VS, Mathur SK, Murthy SN (2008) Noninvasive transcutaneous sampling of glucose by electroporation. J Diabetes Sci Technol 2(2):250–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Piggott JM, Sheahan BJ, Soden DM, O’Sullivan GC, Atkins GJ (2009) Electroporation of RNA stimulates immunity to an encoded reporter gene in mice. Mol Med Rep 2(5):753–756

    CAS  PubMed  Google Scholar 

  • Pliquett U, Langer R, Weaver JC (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim Biophys Acta 1239(2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Edelman ER, Gimm JA, Langer R, Weaver JC (1995) Transdermal delivery of heparin by skin electroporation. Biotechnology (N Y) 13(11):1205–1209

    CAS  Google Scholar 

  • Prommer E, Thompson L (2011) Intranasal fentanyl for pain control: current status with a focus on patient considerations. Patient Prefer Adherence 5:157–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabussay D (2008) Applicator and electrode design for in vivo DNA delivery by electroporation. Methods Mol Biol 423:35–59

    Article  CAS  PubMed  Google Scholar 

  • Rastogi R, Anand S, Koul V (2010) Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug Dev Ind Pharm 36(11):1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Monteiro-Riviere NA, Rogers RA, Bommannan D, Tamada JA, Potts RO (1995) Pulsatile transdermal delivery of LHRH using electroporation: drug delivery and skin toxicology. J Control Release 36(3):229–233

    Article  CAS  Google Scholar 

  • Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P (2006) Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 13(2):320–327

    Article  CAS  PubMed  Google Scholar 

  • Roos AK, Eriksson F, Timmons JA, Gerhardt J, Nyman U, Gudmundsdotter L, Brave A, Wahren B, Pisa P (2009a) Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One 4(9):e7226

    Article  PubMed  PubMed Central  Google Scholar 

  • Roos AK, Eriksson F, Walters DC, Pisa P, King AD (2009b) Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol Ther 17(9):1637–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen A, Daly ME, Hui SW (2002) Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta 1564(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Lecouturier N, Preat V (1994) Transdermal delivery of metoprolol by electroporation. Pharm Res 11(11):1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Morre ND, Preat V (1996) Transdermal delivery of fentanyl by electroporation. II. Mechanisms involved in drug transport. Pharm Res 13(9):1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Prausnitz MR, Preat V (1997) Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharm Res 14(5):638–644

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Langers G, Montmayeur S, Preat V (1998a) Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J Control Release 50(1–3):225–235

    Article  CAS  PubMed  Google Scholar 

  • Vanbever R, Leroy MA, Preat V (1998b) Transdermal permeation of neutral molecules by skin electroporation. J Control Release 54(3):243–250

    Article  CAS  PubMed  Google Scholar 

  • Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M, Leung L, Otten GR, Thudium K, Selby MJ, Ulmer JB (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164(9):4635–4640

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Chen CH, Huang CC, Lin CD, Hui SW (2006) Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery. J Control Release 110(3):557–565

    Article  CAS  PubMed  Google Scholar 

  • Zewert TE, Pliquett UF, Vanbever R, Langer R, Weaver JC (1999) Creation of transdermal pathways for macromolecule transport by skin electroporation and a low toxicity, pathway-enlarging molecule. Bioelectrochem Bioenerg 49(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57(17):5425–5440

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angamuthu, M., Murthy, S.N. (2017). Therapeutic Applications of Electroporation. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics