Skip to main content

Transdermal Delivery of Peptides and Proteins by Physical Methods

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement

Abstract

Delivery of peptides and proteins is critical for their clinical applications. Oral administration of these molecules is not feasible due to degradation in the gastrointestinal tract. Peptides and proteins are, hence, conventionally administered by the parenteral route. Transdermal route offers a good alternative for parenteral delivery of proteins resulting in improved patient compliance. However, due to their size and hydrophilicity, peptides and proteins are unable to permeate through the skin. To overcome the skin barrier, various physical enhancement techniques such as microporation, iontophoresis, sonophoresis, electroporation, and jet injectors have been investigated. These techniques enabling transdermal delivery of peptides and proteins will be discussed in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abla N, Naik A, Guy RH, Kalia YN (2005) Contributions of electromigration and electroosmosis to peptide iontophoresis across intact and impaired skin. J Control Release Off J Control Release Soc 108(2–3):319–330

    Article  CAS  Google Scholar 

  • Arora A, Hakim I, Baxter J, Rathnasingham R, Srinivasan R, Fletcher DA et al (2007) Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci U S A 104(11):4255–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachhav YG, Kalia YN (2009) Stability of triptorelin in the presence of dermis and epidermis. Int J Pharm 378(1–2):149–151

    Article  CAS  PubMed  Google Scholar 

  • Bachhav YG, Heinrich A, Kalia YN (2011) Using laser microporation to improve transdermal delivery of diclofenac: increasing bioavailability and the range of therapeutic applications. Eur J Pharm Biopharm 78(3):408–414

    Article  CAS  PubMed  Google Scholar 

  • Badkar AV, Smith AM, Eppstein JA, Banga AK (2007) Transdermal delivery of interferon alpha-2B using microporation and iontophoresis in hairless rats. Pharm Res 24(7):1389–1395

    Article  CAS  PubMed  Google Scholar 

  • Bal SM, Caussin J, Pavel S, Bouwstra JA (2008) In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 35(3):193–202

    Article  CAS  PubMed  Google Scholar 

  • Banga AK (2006), Therapeutic peptides and proteins formulation, processing, and delivery systems, 2nd ed, CRC Press/Taylor and Francis, Boca Raton FL, USA

    Google Scholar 

  • Banga AK (2009) Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 6(4):343–354

    Article  CAS  PubMed  Google Scholar 

  • Banga AK (2011) Transdermal and intradermal delivery of therapeutic agents: application of physical technologies, p 309 CRC Press. Taylor & Francis Group, Boca Raton, FL-33487, USA

    Google Scholar 

  • Banga AK, Katakam M, Mitra R (1995) Transdermal iontophoretic delivery and degradation of vasopressin across human cadaver skin. Int J Pharm 116(2):211–216

    Article  CAS  Google Scholar 

  • Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Boucaud A, Montharu J, Machet L, Arbeille B, Machet MC, Patat F et al (2001) Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat Rec 264(1):114–119

    Article  CAS  PubMed  Google Scholar 

  • Boucaud A, Garrigue MA, Machet L, Vaillant L, Patat F (2002) Effect of sonication parameters on transdermal delivery of insulin to hairless rats. J Control Release Off J Control Release Soc 81(1–2):113–119

    Article  CAS  Google Scholar 

  • Bruce K. Redding J, Inventor, Dermisonics, Inc., Assignee. Substance delivery device patent US 6908448. 2005

    Google Scholar 

  • Cazares-Delgadillo J, Naik A, Ganem-Rondero A, Quintanar-Guerrero D, Kalia YN (2007) Transdermal delivery of cytochrome C-A 12.4 kDa protein-across intact skin by constant-current iontophoresis. Pharm Res 24(7):1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Cevc G (2003) Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet 42(5):461–474

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Hofmann GA, Zhang L, Deftos LJ, Banga AK (2000) The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J Control Release 66(2–3):127–133

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedula A, Joshi DP, Anderson C, Morris RL, Sembrowich WL, Banga AK (2005) In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. Int J Pharm 297(1–2):190–196

    CAS  PubMed  Google Scholar 

  • Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M et al (2006) Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 24(4):455–460

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Flynn GL, Amidon GL (1990) Transdermal delivery of bioactive peptides: the effect of n-decylmethyl sulfoxide, pH, and inhibitors on enkephalin metabolism and transport. Pharm Res 7(11):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Chu LY, Choi SO, Prausnitz MR (2010) Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci 99(10):4228–4238

    Article  CAS  PubMed  Google Scholar 

  • Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD et al (2004) Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 97(3):503–511

    Article  CAS  PubMed  Google Scholar 

  • Daddona PE, Matriano JA, Mandema J, Maa YF (2011) Parathyroid hormone (1–34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res 28(1):159–165

    Article  CAS  PubMed  Google Scholar 

  • Davis SP, Martanto W, Allen MG, Prausnitz MR (2005) Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52(5):909–915

    Article  PubMed  Google Scholar 

  • Duan D, Moeckly C, Gysbers J, Novak C, Prochnow G, Siebenaler K et al (2011) Enhanced delivery of topically-applied formulations following skin pre-treatment with a hand-applied, plastic microneedle array. Curr Drug Deliv 8(5):557–565

    Article  CAS  PubMed  Google Scholar 

  • Dubey S, Kalia YN (2010) Non-invasive iontophoretic delivery of enzymatically active ribonuclease A (13.6 kDa) across intact porcine and human skins. J Control Release 145(3):203–209

    Article  CAS  PubMed  Google Scholar 

  • Dubey S, Kalia YN (2011) Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1. J Control Release Off J Control Release Soc 152(3):356–362

    Article  CAS  Google Scholar 

  • Dubey S, Perozzo R, Scapozza L, Kalia YN (2011) Noninvasive transdermal iontophoretic delivery of biologically active human basic fibroblast growth factor. Mol Pharm 8(4):1322–1331

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Chavez JJ, Bonilla-Martinez D, Villegas-Gonzalez MA, Revilla-Vazquez AL (2009) Electroporation as an efficient physical enhancer for skin drug delivery. J Clin Pharmacol 49(11):1262–1283

    Article  CAS  PubMed  Google Scholar 

  • Foldvari M, Badea I, Kumar P, Wettig S, Batta R, King MJ et al (2011) Biphasic vesicles for topical delivery of interferon alpha in human volunteers and treatment of patients with human papillomavirus infections. Curr Drug Deliv 8(3):307–319

    Article  CAS  PubMed  Google Scholar 

  • Fomsgaard A, Bragstad K, Inventors, Inventor Statens Serum Institute, Assignee. Optimized influenza vaccines patent US 2011/0229518 A1. 2011

    Google Scholar 

  • Getie M, Wohlrab J, Neubert RHH (2005) Dermal delivery of desmopressin acetate using colloidal carrier systems. J Pharm Pharmacol 57(4):423–427

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Prausnitz MR (2007) Coated microneedles for transdermal delivery. J Control Release 117(2):227–237

    Article  CAS  PubMed  Google Scholar 

  • Gomez C, Benito M, Teijon JM, Blanco MD (2012) Novel methods and devices to enhance transdermal drug delivery: the importance of laser radiation in transdermal drug delivery. Ther Deliv 3(3):373–388

    Article  CAS  PubMed  Google Scholar 

  • Gupta J, Felner EI, Prausnitz MR (2011) Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol Ther 13(4):451–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A et al (2009) Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices 11(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Healey TT, Dupuy DE (2011) Radiofrequency ablation: a safe and effective treatment in nonoperative patients with early-stage lung cancer. Cancer J 17(1):33–37

    Article  PubMed  Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87(8):922–925

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Wu SM (1996) Stability of peptides during iontophoretic transdermal delivery. Int J Pharm 131(1):19–23

    Article  CAS  Google Scholar 

  • Ito Y, Nakahigashi T, Yoshimoto N, Ueda Y, Hamasaki N, Takada K (2012) Transdermal insulin application system with dissolving microneedles. Diabetes Technol Ther 14(10):891–899

    Article  CAS  PubMed  Google Scholar 

  • Kalluri H, Banga AK (2011a) Formation and closure of microchannels in skin following microporation. Pharm Res 28(1):82–94

    Article  CAS  PubMed  Google Scholar 

  • Kalluri H, Banga AK (2011b) Transdermal delivery of proteins. AAPS PharmSciTech 12(1):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katikaneni S, Badkar A, Nema S, Banga AK (2009) Molecular charge mediated transport of a 13 kD protein across microporated skin. Int J Pharm 378(1–2):93–100

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92(2):502–504

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Cho EJ, Park YM, Kim HO, Lee JY (2011) Punch excision combined with erbium:YAG fractional laser: its application on different types of scars in Asian patients (a pilot study). J Cosmet Laser Ther 13(4):196–199

    Article  PubMed  Google Scholar 

  • Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR (2012) Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A (2009) Follicular transport route–research progress and future perspectives. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 71(2):173–180

    CAS  Google Scholar 

  • Kochhar C, Imanidis G (2004) In vitro transdermal iontophoretic delivery of leuprolide under constant current application. J Control Release Off J Control Release Soc 98(1):25–35

    Article  CAS  Google Scholar 

  • Kost J, Pliquett U, Mitragotri S, Yamamoto A, Langer R, Weaver J (1996) Synergistic effect of electric field and ultrasound on transdermal transport. Pharm Res 13(4):633–638

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Banga AK (2012) Modulated iontophoretic delivery of small and large molecules through microchannels. Int J Pharm 434(1–2):106–114

    Article  CAS  PubMed  Google Scholar 

  • Kushner J, Blankschtein D, Langer R (2008) Heterogeneity in skin treated with low-frequency ultrasound. J Pharm Sci 97(10):4119–4128

    Article  CAS  PubMed  Google Scholar 

  • Le L, Kost J, Mitragotri S (2000) Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res 17(9):1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Jung H (2012) Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials 33(30):7309–7326

    Article  CAS  PubMed  Google Scholar 

  • Lee V, Hashida M, Mizushima Y (eds) (1995) Trends and future perspectives in peptide and protein drug delivery. Harwood academic publishers, Chur

    Google Scholar 

  • Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S et al (2005) Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res 22(4):550–555

    Article  CAS  PubMed  Google Scholar 

  • Li G, Badkar A, Nema S, Kolli CS, Banga AK (2009) In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 368(1–2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Furnish E, Komalavilas P, Seal BL, Panitch A, Bentley MVLB et al (2008) Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm 68(2):441–445

    Article  CAS  PubMed  Google Scholar 

  • Luis J, Park EJ, Meyer RJ, Smith NB (2007) Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery. J Acoust Soc Am 122(4):2022–2030

    Article  CAS  PubMed  Google Scholar 

  • Lvovich VF, Matthews E, Riga AT, Kaza L (2010) AC electrokinetic platform for iontophoretic transdermal drug delivery. J Control Release Off J Control Release Soc 145(2):134–140

    Article  CAS  Google Scholar 

  • Manosroi A, Lohcharoenkal W, Gotz F, Werner RG, Manosroi W, Manosroi J (2011) Cellular uptake enhancement of Tat-GFP fusion protein loaded in elastic niosomes. J Biomed Nanotechnol 7(3):366–376

    Article  CAS  PubMed  Google Scholar 

  • Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21(6):947–952

    Article  CAS  PubMed  Google Scholar 

  • Medi BM, Singh J (2003) Electronically facilitated transdermal delivery of human parathyroid hormone (1–34). Int J Pharm 263(1–2):25–33

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2006) Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov 5(7):543–548

    PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1995) Ultrasound-mediated transdermal protein delivery. Science 269(5225):850–853

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Farrell J, Tang H, Terahara T, Kost J, Langer R (2000) Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release Off J Control Release Soc 63(1–2):41–52

    Article  CAS  Google Scholar 

  • Mudry B, Guy RH, Begona D-CM (2006) Prediction of iontophoretic transport across the skin. J Control Release Off J Control Release Soc 111(3):362–367

    Article  CAS  Google Scholar 

  • Mutalik S, Parekh HS, Davies NM, Udupa N (2009) A combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride. Drug Deliv 16(2):82–91

    Article  CAS  PubMed  Google Scholar 

  • Nair V, Panchagnula R (2003) Physicochemical considerations in the iontophoretic delivery of a small peptide: in vitro studies using arginine vasopressin as a model peptide. Pharmacol Res 48(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Ogura M, Paliwal S, Mitragotri S (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60(10):1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Dodds J, Smith NB (2008) Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection. Int J Nanomedicine 3(3):335–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters EE, Ameri M, Wang X, Maa YF, Daddona PE (2012) Erythropoietin-coated ZP-microneedle transdermal system: preclinical formulation, stability, and delivery. Pharm Res 29(6):1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Phipps JB, Padmanabhan RV, Lattin GA (1989) Iontophoretic delivery of model inorganic and drug ions. J Pharm Sci 78(5):365–369

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ, Shah S (1990) Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm Res 7(3):222–229

    Article  CAS  PubMed  Google Scholar 

  • Pillai O, Panchagnula R (2003) Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Release 89(1):127–140

    Article  CAS  PubMed  Google Scholar 

  • Pillai O, Borkute SD, Sivaprasad N, Panchagnula R (2003) Transdermal iontophoresis of insulin. II. Physicochemical considerations. Int J Pharm 254(2):271–280

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin - a mechanism to enhance transdermal drug-delivery. Proc Natl Acad Sci U S A 90(22):10504–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rader RA (2011) FDA biopharmaceutical product approvals and trends: 2011 Biotechnology Information Institute. http://www.biopharma.com/approvals_2011.html. Accessed 12 Oct 2012

  • Raiman J, Koljonen M, Huikko K, Kostiainen R, Hirvonen J (2004) Delivery and stability of LHRH and Nafarelin in human skin: the effect of constant/pulsed iontophoresis. Eur J Pharm Sci Off J Eur Fed Pharm Sci 21(2–3):371–377

    CAS  Google Scholar 

  • Rao R, Nanda S (2009) Sonophoresis: recent advancements and future trends. J Pharm Pharmacol 61(6):689–705

    Article  CAS  PubMed  Google Scholar 

  • Salas N, Castle SM, Leveillee RJ (2011) Radiofrequency ablation for treatment of renal tumors: technological principles and outcomes. Expert Rev Med Devices 8(6):695–707

    Article  PubMed  Google Scholar 

  • Saurer EM, Flessner RM, Sullivan SP, Prausnitz MR, Lynn DM (2010) Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11(11):3136–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz YB, Naik A, Guy RH, Vuaridel E, Kalia YN (2005) Transdermal iontophoretic delivery of vapreotide acetate across porcine skin in vitro. Pharm Res 22(8):1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kalluri H, Herwadkar A, Badkar A, Banga AK (2012) Transcending the skin barrier to deliver peptides and proteins using active technologies. Crit Rev Ther Drug Carrier Syst 29(4):265–298

    Article  CAS  PubMed  Google Scholar 

  • Smith NB, Lee S, Maione E, Roy RB, McElligott S, Shung KK (2003) Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs. Ultrasound Med Biol 29(2):311–317

    Article  PubMed  Google Scholar 

  • Song YK, Hyun SY, Kim HT, Kim CK, Oh JM (2011) Transdermal delivery of low molecular weight heparin loaded in flexible liposomes with bioavailability enhancement: comparison with ethosomes. J Microencapsul 28(3):151–158

    Article  CAS  PubMed  Google Scholar 

  • Tas C, Mansoor S, Kalluri H, Zarnitsyn VG, Choi SO, Banga AK et al (2012) Delivery of salmon calcitonin using a microneedle patch. Int J Pharm 423(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A, Tuchscherer J, Mitragotri S (2001) Frequency dependence of sonophoresis. Pharm Res 18(12):1694–1700

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A, Mitragotri S (2003) Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. J Pharm Sci 92(2):381–393

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Dokka S, Kelly S, Hardee GE, Mitragotri S (2004) Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm Res 21(12):2219–2225

    Article  CAS  PubMed  Google Scholar 

  • Clinical Trials – U-Strip/Insulin Patch: Transdermal Specialties, Inc (2012) http://www.transdermalspecialties.com/clinicaltrials.html. Accessed 12 Oct 2012

  • van der Maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 161(2):645–655

    Article  PubMed  Google Scholar 

  • Vyteris announces positive results from phase II clinical trial of transdermal patch for female infertility. COMTEX News Network; 2010

    Google Scholar 

  • Weimann LJ, Wu J (2002) Transdermal delivery of poly-l-lysine by sonomacroporation. Ultrasound Med Biol 28(9):1173–1180

    Article  PubMed  Google Scholar 

  • Yu J, Bachhav YG, Summer S, Heinrich A, Bragagna T, Bohler C et al (2010) Using controlled laser-microporation to increase transdermal delivery of prednisone. J Control Release 148(1):e71–e73

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Kalaria DR, Kalia YN (2011) Erbium:YAG fractional laser ablation for the percutaneous delivery of intact functional therapeutic antibodies. J Control Release 156(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang I, Shung KK, Edwards DA (1996) Hydrogels with enhanced mass transfer for transdermal drug delivery. J Pharm Sci 85(12):1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Gao J, Zhu Q, Zhang M, Ding X, Wang X et al (2010) Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles. Int J Pharm 402(1–2):205–212

    CAS  PubMed  Google Scholar 

  • Zhao YL, Murthy SN, Manjili MH, Guan LJ, Sen A, Hui SW (2006) Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization. Vaccine 24(9):1282–1290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Banga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, Y., Kumar, V., Herwadkar, A., Banga, A.K. (2017). Transdermal Delivery of Peptides and Proteins by Physical Methods. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics