Skip to main content

Abstract

In order to exploit the transdermal route for systemic delivery of a wide range of drug molecules including peptide/protein molecules and genetic material, a means of disrupting the excellent barrier properties of the uppermost layer of the skin, the stratum corneum, must be sought. The use of microneedle (MN) arrays has been proposed as a method to temporarily disrupt the barrier function of the skin and thus enable enhanced transdermal drug delivery. MN arrays consist of a plurality of micron-sized needles, generally ranging from 100 to 3000 μm in height, of a variety of different shapes and composition (e.g. silicon, metal, sugars and biodegradable polymers). The application of such MN arrays to the skin results in the creation of aqueous channels which are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of macromolecules. MNs are sufficiently long to disrupt the stratum corneum but have sufficiently shallow penetration to avoid bleeding and pain. This chapter will focus on the recent and future developments for MN technology, focusing on the materials used for MN fabrication, the forces required for MN insertion and the potential safety aspects that may be involved with the use of MN devices.

The original version of this chapter was revised. An erratum to this chapter is available at DOI 10.1007/978-3-662-53273-7_31

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ami Y, Tachikawa H, Takano N, Miki N (2011) Formation of polymer microneedles using soft lithography. J Micronanolithogr Mems Moems 10:011503

    Article  CAS  Google Scholar 

  • Aoyagi S, Hayato I, Yuichi I, Mitsuo F, Ogawa H (2007) Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sensor Actuat A-Phys 139:293–302

    Article  CAS  Google Scholar 

  • Bal SM, Caussin J, Pavel S, Bouwstra JA (2008) In vivo assessment of safety microneedle arrays in human skin. Eur J Pharm Sci 35:193–202

    Article  CAS  PubMed  Google Scholar 

  • Bal SM, Ding Z, Kersten G, Jiskoot W, Bouwstra J (2010) Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 27:1837–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banga AK (2006) Therapeutic peptides and proteins: formulation, processing and delivery systems. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Banga AK (2009) Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 6:343–354

    Article  CAS  PubMed  Google Scholar 

  • Birchall J, Clemo R, Anstey A, John D (2011) Microneedles in clinical practice – an explanatory study into the views and opinions of healthcare professionals and the public. Pharm Res 28:95–106

    Article  CAS  PubMed  Google Scholar 

  • Bodhale W, Nisar A, Afzulpurka N (2010) Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid 8:373–392

    Article  CAS  Google Scholar 

  • Chandrasekaran S, Frazier AB (2003) Characterization of surface micromachined metallic Microneedles. IEEE 16th Annual International Conference on MEMS, Kyoto, 363– 366

    Google Scholar 

  • Chandrasekaran S, Brazzle JD, Frazier AB (2003) Surface micromachined metallic microneedles. J. MEMS 12:281–288

    Google Scholar 

  • Chen X, Prow T, Crichton M et al (2009) Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release 139:212–220

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Choi S, Prausnitz M (2010) Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci 99:4228–4238

    Article  CAS  PubMed  Google Scholar 

  • Cormier M, Johnson B, Ameri M et al (2004) Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 97:503–511

    Article  CAS  PubMed  Google Scholar 

  • Coulman S, Allender C, Birchall J (2006) Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy. Crit Rev Ther Drug 23:205–258

    Article  CAS  Google Scholar 

  • Coulman S, Birchall J, Alex A et al (2011) In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography. Pharm Res 28:66–81

    Article  CAS  PubMed  Google Scholar 

  • Crichton ML, Ansaldo A, Chen X, Prow TW, Fernando GJP, Kendall MAF (2010) The effect of strain rate on the precision of penetration of short densely packed microprojection array patches coated with vaccine. Biomaterials 31:4562–4572

    Article  CAS  PubMed  Google Scholar 

  • Daddona P, Matriano J, Mandem J, Maa Y (2011) Parathyroid hormone (1-34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res 28:159–165

    Article  CAS  PubMed  Google Scholar 

  • Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomechanics 37:1155–1163

    Article  Google Scholar 

  • Davis SP, Martanto W, Allen M, Prausnitz MR (2005) Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52:909–915

    Article  PubMed  Google Scholar 

  • Ding Z, Verbaan F, Bivas B et al (2009) Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 136:71–78

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Morrow DIJ, McCarron PA et al (2008) Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release 129:154–162

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Morrow DIJ, McCarron PA et al (2009a) Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem Photobiol 85:195–204

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Morrow DIJ, Thakur RRS (2009b) Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 35:1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly RF, Thakur R, Tunney M et al (2009c) Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res 26:2513–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly RF, Garland MJ, Morrow DIJ et al (2010) Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release 147:333–341

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Majithiya R, Singh TRR et al (2011) Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 28:41–57

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Thakur RRS, Morrow DIJ, Woolfson AD (2012) Microneedle-mediated transdermal and intradermal drug delivery. Wiley-Blackwell, London

    Book  Google Scholar 

  • Enfield J, O’Connell ML, Lawlor K, Jonathan E, O’Mahony C, Leahy M (2010) In vivo dynamic characterization of microneedle skin penetration using optical coherence tomography. J Biomed Opt 15:046001

    Article  PubMed  Google Scholar 

  • Fukushima K, Ise A, Morita H, Ito Y (2011) Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res 28:7–21

    Article  CAS  PubMed  Google Scholar 

  • Gardeniers H, Luttge R, Berenschot E et al (2003) Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectomech S 12:855–862

    Article  Google Scholar 

  • Garland MJ, Migalska K, Mahmood TMT, Majithiya R, Caffarel-Salvador E, McCrudden CM, McCarthy HO, Woolfson AD, Donnelly RF (2012) Choice of skin model is important in predicting performance of drug loaded soluble microneedle arrays. Int J Pharm 434:80–89

    Article  CAS  PubMed  Google Scholar 

  • Gerstel MS, Place VA (1976) US patent US3964482

    Google Scholar 

  • Gill H, Prausnitz M (2007a) Coated microneedles for transdermal delivery. J Control Release 117:227–237

    Article  CAS  PubMed  Google Scholar 

  • Gill H, Prausnitz M (2007b) Coating formulations for microneedles. Pharm Res 24:1369–1280

    Article  CAS  PubMed  Google Scholar 

  • Gill H, Söderholm J, Prausnitz M, Sallberg M (2010) Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther 17:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griss P, Stemme G (2003) Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectomech Syst 12:296–301

    Article  Google Scholar 

  • Gupta H, Sharma A (2009) Recent trends in protein and peptide drug delivery systems. Asian J Pharm 3:69–75

    Article  Google Scholar 

  • Gupta J, Felner E, Prausnitz M (2009) Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther 11:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta J, Park SS, Bondy B, Felner EI, Prausnitz MR (2011) Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 32:6823–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Hyun DH, Park HH, Lee SS, Kim CH, Kim CG (2007) A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J Micromech Microeng 17:1184–1191

    Article  CAS  Google Scholar 

  • Han M, Kim D, Seong H et al (2009) Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sensor Actuat B-Chem 137:274–280

    Article  CAS  Google Scholar 

  • Haq M, Smith E, John D et al (2009) Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices 11:35–47

    Article  CAS  PubMed  Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci 87:922–925

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Eiji H, Atsushi S, Nobuyuki S, Kanji T (2006a) Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 29:82–88

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yoshmitsu J, Shiroyama K, Sugioka N, Takada K (2006b) Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target 14:255–261

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K (2007) Sustained-release self-dissolving micropiles for percutaneous absorption on insulin in mice. J Drug Target 15:323–326

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Ohashi Y, Saeki A, Sugioka N, Takada K (2008a) Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs. Chem Pharm Bull 56:243–246

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Saeki A, Shiroyama K, Sugioka N, Takada K (2008b) Percutaneous absorption of interferon-alpha by self-dissolving micropiles. J Drug Target 16:243–249

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Ohashi Y, Shiroyama K, Sugioka N, Takada K (2008c) Self-dissolving micropiles for the percutaneous absorption of recombinant human growth hormone in rats. Biol Pharm Bull 31:1631–1633

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Hasegawa R, Fukushima K, Sugioka N, Takada K (2010) Self-dissolving micropile array chip as percutaneous delivery system of protein drug Biol. Pharm Bull 33:683–690

    Article  CAS  Google Scholar 

  • Ji J, Tay F, Miao J, Iliescu C (2006) Microfabricated microneedles with porous tip for drug delivery. J Micromech Microeng 16:958–964

    Article  CAS  Google Scholar 

  • Kaushik S, Allen H, Donald D et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Park JH, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64:1547–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolli C, Banga AK (2008) Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 25:104–113

    Article  CAS  PubMed  Google Scholar 

  • Kwon SY (2004) In vitro evaluation of transdermal drug delivery by a microneedle patch, Controlled Release Society 31st Annual Meeting Transactions. Hawaii, Abstract no.115

    Google Scholar 

  • Lee JW, Park JH, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Badkar A, Nema S, Kolli CS, Banga AK (2009) In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 368:109–115

    Article  CAS  PubMed  Google Scholar 

  • Li G, Badkar A, Kalluri H, Banga A (2010) Microchannels created by sugar and metal microneedles: characterization by microscopy, macromolecular flux and other techniques. J Pharm Sci 99:1931–1941

    Article  CAS  PubMed  Google Scholar 

  • Lippmann J, Geiger E, Pisano A (2007) Polymer investment molding: method for fabricating hollow, microscale parts. Sensor Actuat A-Phys 134:2–10

    Article  CAS  Google Scholar 

  • 3M http://solutions.3m.com/wps/portal/3M/en_WW/3M-DDSD/Drug-Delivery-Systems/transdermal/microneedle/. Accessed 5 Dec 2012

  • Martanto W, Davis SP, Holiday NR, Wang J, Gill H, Prausnitz MR (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21:947–952

    Article  CAS  PubMed  Google Scholar 

  • Martanto W, Moore JS, Couse T, Prausnitz MR (2006a) Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release 112:357–361

    Article  CAS  PubMed  Google Scholar 

  • Martanto W, Moore J, Kashlan O et al (2006b) Microinfusion using hollow microneedles. Pharm Res 23:104–113

    Article  CAS  PubMed  Google Scholar 

  • Matriano JA, Cormier M, Johnson J et al (2002) Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70

    Article  CAS  PubMed  Google Scholar 

  • McAllister D, Wang P, Davis S et al (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A 100:13755–13760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikszta JA, Dekker JP, Harvey NG, Dean CH, Brittingham JM (2006) Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun 74:6806–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyano T, Tobinaga Y, Takahiro K et al (2005) Sugar micro needles as transdermic drug delivery System. Biomed Microdevices 7:185–188

    Article  CAS  PubMed  Google Scholar 

  • Miyano T, Miyachi T, Okanishi T, et al (2007) Hydrolytic microneedles as transdermal drug delivery system. Proceedings of the 14th international conference on solid-state sensors, actuators and microsystems, Lyon, 10–14th June 2007;1:355–358

    Google Scholar 

  • Nordquist L, Roxhed N, Griss P, Stemme G (2007) Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm Res 24:93–100

    Article  CAS  Google Scholar 

  • Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere N, Doraiswamy A, Narayan R (2007) Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceramic Tech 4:22–29

    Article  CAS  Google Scholar 

  • Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Allen MG, Prausnitz MR (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Yoon YK, Choi SO, Prausnitz MR, Allen MG (2007) Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Bio-Med Eng 54:903–913

    Article  Google Scholar 

  • Pearton M, Allender C, Brain K et al (2007) Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm Res 25:407–416

    Article  PubMed  CAS  Google Scholar 

  • Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Fabrizio E (2006) Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeni 16:473–479

    Article  CAS  Google Scholar 

  • Pettis RJ, Harvey AJ (2012) Microneedle delivery: clinical studies and emerging medical applications. Therapeutic Deliv 3:357–371

    Article  CAS  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotech 26:1261–1268

    Article  CAS  Google Scholar 

  • Roxhed N, Patrick G, Stemme G (2008a) Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed Microdevices 10:271–279

    Article  CAS  PubMed  Google Scholar 

  • Roxhed N, Samel B, Nordquist L, Griss P, Stemme G (2008b) Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng 55:1063–1071

    Article  PubMed  Google Scholar 

  • Sammoura F, Kang JJ, Heo YM, Tae SJ, Liwei L (2007) Polymeric microneedle fabrication using a microinjection molding technique. Microsyst Technol 13:517–522

    Article  CAS  Google Scholar 

  • Sathyan G, Sun Y, Weyers R, Daddona P, Staehr P, Gupta S (2004) Macroflux® desmopressin transdermal delivery system: pharmacokinetic and pharmacodynamic evaluation in healthy volunteers. AAPS J [Abstract]. Available at: www.aapsj.org/abstracts/AM_2004/AAPS2004-000665.PDF . Accessed 25 Aug 2012

  • Shah UU, Roberts M, Gul MO, Tuleu C, Beresford MW (2011) Needle free and micro-needle drug delivery in children: a case for disease modifying antirheumatic drugs (DMARD’s). Int J Pharm 416:1–11

    Article  CAS  PubMed  Google Scholar 

  • Shakeel M, Pathan Dinawaz N, Ziyaurrahman AR, Bagwan A, Sayed B (2011) Microneedle as a novel drug delivery system: a review. Int Res J Pharm 2:72–77

    Google Scholar 

  • Sivamani R, Stoeber B, Wu G, Zhai H, Liepmann D, Maibach H (2005) Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res Technol 11:152–156

    Article  PubMed  Google Scholar 

  • Sivamani RK, Liepmann D, Mallbach HI (2007) Microneedle and transdermal application. Expert Opin Drug Deliv 4:19–25

    Article  CAS  PubMed  Google Scholar 

  • Sivamani R, Stoeber B, Liepmann D, Maibach H (2009) Microneedle penetration and injection past the stratum corneum in humans. J Dermatol Treat 20:156–159

    Article  CAS  Google Scholar 

  • Stahl J, Wohlert KM (2012) Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. BMC Pharmacol Toxicol 13:5. doi:10.1186/2050-6511-13-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeber B, Liepmann L (2000) Two-dimensional arrays of out-of-plane needles. Proc ASME MEMS Div IMECE 1:355–359

    Google Scholar 

  • Sullivan SP, Murthy N, Prausnitz MR (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan SP, Koutsonanos DG, Del Pilar MM et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner T, Marks R (2008) Delivering drugs by the transdermal route: review and comment. Skin Res Technol 14:249–260

    Article  CAS  PubMed  Google Scholar 

  • Thakur RRS, Dunne NJ, Cunningham E, Donnelly RF (2011) Review of patents on microneedle applicators. Rec Pat Drug Del Form 5:11–23

    Article  Google Scholar 

  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y (2009) Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27:454–459

    Article  PubMed  Google Scholar 

  • Verbaan F, Bal S, Van den Berg D et al (2007) Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release 117:238–245

    Article  CAS  PubMed  Google Scholar 

  • Verbaan FJ, Bal SM, Van den DJB et al (2008) Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release 128:80–88

    Article  CAS  PubMed  Google Scholar 

  • Wang PM, Cornwell M, Prausnitz MR (2005) Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diab Tech Ther 7:131–141

    Article  CAS  Google Scholar 

  • Wang PM, Cornwell M, Hill J, Prausnitz MR (2006) Precise microinjection into skin using hollow microneedles. J Invest Dermatol 126:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Wei-Ze L, Mei-Ronga H, Jian-Pinga Z et al (2010) Super-short solid silicon microneedles for transdermal drug delivery applications Int. J Pharm 389:122–129

    Google Scholar 

  • Wermeling D, Banks S, Hudson D et al (2008) Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci U S A 105:2058–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widera G, Johnson J, Kim L et al (2006) Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine 24:1653–1664

    Article  CAS  PubMed  Google Scholar 

  • Wiechers JW (1998) The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm Week Bl Sci 11:185–198

    Article  Google Scholar 

  • Wilke N, Mulcahy A, Ye S, Morrissey A (2005) Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 36:650–656

    Article  CAS  Google Scholar 

  • Williams AC (2003) Transdermal and topical drug delivery. Pharmaceutical Press, London

    Google Scholar 

  • Xie Y, Xu B, Gao Y (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomed Nanotechnol 1:184–190

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamamoto Y (1976) Electrical properties of the epidermal stratum corneum Med. Biol Eng Comput 14:151–158

    CAS  Google Scholar 

  • Zafar SR, Thwar PK, Yang M, Ugaz VM, Burns MA (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56:185–189

    Article  CAS  Google Scholar 

  • Zhu Q, Zarnistyn V, Ye L et al (2009) Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci U S A 106:7968–7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–148

    Article  CAS  PubMed  Google Scholar 

  • Zosano Pharma. http://www.zosanopharma.com/. Accessed 5 Dec 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan F. Donnelly BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McAlister, E., Garland, M.J., Singh, T.R.R., Donnelly, R.F. (2017). Microporation Using Microneedle Arrays. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics