Skip to main content

Abstract

It is known for a long time that the stratum corneum is the main barrier that prevents transdermal delivery of water-soluble drugs, peptides, and proteins. Attempts to overcome this barrier include the development of transdermal delivery systems that are based on fractional ablation of the stratum corneum and epidermis, thus forming multiple of tiny transient pores in a specific zone of the outer skin layers. The ablation was done by various physical energy methods, based on heat, high-frequency electrical current, or laser energy. Formation of multiple tiny pores in the skin enabled efficient transdermal delivery of therapeutic doses of highly water-soluble drugs, including a variety of peptides and proteins. This chapter discusses the unique properties of these transdermal delivery methods, as well as the potential uses of these techniques, such as delivery of active biological compounds as an alternative to injection, transcutaneous vaccination, or delivery of genes into skin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander A, Dwivedi S, Ajazuddin, Giri TK, Saraf S, Tripathi DK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164(1):26–40

    Article  CAS  PubMed  Google Scholar 

  • Bach D, Weiss R, Hessenberger M, Kitzmueller S, Weinberger EE, Krautgartner WD, Hauser-Kronberger C, Boehler C, Thalhamer J, Scheiblhfer S (2012) Transcutaneous immunotherapy via laser-generated micropores efficiently alleviates allergic asthma in Phl p 5- sensitized mice. Allergy 67:1365–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachhav YG, Summer S, Heinrich A, Bragagna T, Bohler C andKalia YN (2010) Effect of controlled microporation of drug transport kinetics into and across the skin. J Controlled Rel 146:31–36

    Google Scholar 

  • Badkar AV, Smith AM, Eppstein JA, Banga AK (2007) Transdermal delivery of interferon Alpha-2b using microporation and iontophoresis in Hairless Rats. Pharm Res 24(7):1389–1395

    Article  CAS  PubMed  Google Scholar 

  • Birchall J, Coulmana S, Anstey A, Gateley C, Sweetland H, Gershonowitz A, Neville L, Levin G (2006) Cutaneous gene expression of plasmid DNA in excised human skin following delivery via microchannels created by radio frequency ablation. Int J Pharm 312:15–23

    Article  CAS  PubMed  Google Scholar 

  • Eppstein J, Enscore D, Tagliaferri F, Tolia G, Chang S, Smith A, Patel Y, McRae S (2007) Permeant delivery system and methods for use thereof. US Patent application 2007/0031495 A1

    Google Scholar 

  • Kam Y, Sacks H, Mevorat-Kaplan K, Stern M, Levin G (2012) Radio frequency-microchannels for transdermal delivery: characterization of skin recovery and delivery window. Pharmacol Pharm 3:20–28

    Article  CAS  Google Scholar 

  • Kim J, Jang JH, Lee JH, Choi JK, Park WR, Bae IH, Bae J, Park JW (2012) Enhanced topical delivery of small hydrophilic or lipophilic active agents and epidermal growth factor by fractional radiofrequency microporation. Pharm Res 29:2017–2029

    Article  CAS  PubMed  Google Scholar 

  • Lane ME (2013) Skin penetration enhancers. Int J Pharm 447(1–2):12–21

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Gadiraja P, Park JH, Allen MG, Prausnitz MR (2011) Microsecond thermal ablation of skin for transdermal drug delivery. J Control Release 154(1):58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin G (2008) Advances in radio-frequency transdermal drug delivery. Pharm Tech Drug Delivery 32:S12–S19

    Google Scholar 

  • Levin G, Daniel D (2008) Transdermal delivery system for anti-emetic medication. US patent 7,415, 306 B2

    Google Scholar 

  • Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, Zivin I, Phillip M (2005) Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res 22(4):550–555

    Article  CAS  PubMed  Google Scholar 

  • Levin G, Gershonowitz A, Gadasi H (2006) Delivery system for transdermal immunization. WO 2006/003659

    Google Scholar 

  • Nakano M, Uenaka K, Tsujimoto M, Loghin C, Hu L, Stock J, Kochba E, Kenan Y (2011) Safety, tolerability, pharmacokinetics, and pharmacodynamics of Teriparatide administered transdermally in Japanese postmenopausal women. American Society for Bone and Mineral Research (ASBMR) annual meeting, San Diego, 16–20 Sept 2011

    Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sintov AC, Krymberk I, Daniel D, Hannan T, Sohn Z, Levin G (2003) Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89:311–320

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Tomlinson E (2008) The PassPort™ system: a new transdermal patch for water-soluble drugs, proteins, and carbohydrates. In: Rathbone MJ, Hadgraft J, Roberts MS, Lane ME (eds.), Modified-release drug delivery technology, 2nd edn, Vol 2, Chapter 31, CRC Press

    Google Scholar 

  • Stern M, Levin G (2008) Transdermal delivery system for dried particulate or lyophilized medications. US patent No. 7,335,377

    Google Scholar 

  • Stern M, Levin G (2012) Transdermal delivery system for dried particulate or lyophilized medications. US patent No 8,133,505 B2

    Google Scholar 

  • Weiss R, Hessenberger M, Kizmuller S, Bach D, Weinberger EE, Krautgartner WD, Hauser-Kronberger C, Malissen B, Boehler C, Kalia YN, Thalhamer J, Scheiblhofer S (2012) Transcutaneous vaccination via laser microporation. J Control Release 162(2):391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Bachhav YG, Summer S, Heinrich A, Bragagna T, Bohler C, Kalia YN (2010) Using controlled laser-microporation to increase transdermal delivery of prednisone. J Control Release 148:e71–e73

    Article  CAS  PubMed  Google Scholar 

  • Zech NH, Murtinger M, Uher P (2011) Pregnancy after ovarian superovulation by transdermal delivery of follicle-stimulating hormone. Fertil Steril 95:2784–2785

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galit Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levin, G. (2017). Skin Ablation Methods for Transdermal Drug Delivery. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics