Skip to main content

Magnetophoresis: Skin Penetration Enhancement by a Magnetic Field

  • Chapter
  • First Online:
Book cover Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement

Abstract

Magnetophoresis is the term used to describe the enhancement of drug permeation across a biological barrier by the application of a magnetic field. This is a relatively new field of skin penetration enhancement that has been pioneered by two main groups of scientists and is now in commercial development. Administration of static and pulsed electromagnetic fields has been shown to enhance skin penetration of a range of small molecules including lidocaine hydrochloride, diclofenac, 5-aminolevulinic acid, naltrexone hydrochloride and dipeptide alanine-tryptophan (Ala-Trp). The mechanism of action is suggested to be diamagnetic repulsion of the molecule down the magnetic field into the skin, although there is also some evidence of potential transient stratum corneum barrier reduction. Magnetophoresis has also been shown to effectively enhance drug flow into microneedle-porated skin to provide a synergistic permeation enhancement. An advantage of this technology is that it can be miniaturized and does not require an external energy source; thus a magnetic array can be incorporated into a transdermal patch or used as an applicator for a topical cream or gel. This chapter provides a critical appraisal of magnetophoresis based on the current published literature and also provides an insight into some of the developmental data not yet published.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmadian S, Zarchi SR, Bolouri B (2006) Effects of extremely-low-frequency pulsed electromagnetic fields on collagen synthesis in rat skin. Biotechnol Appl Biochem 43(Pt 2):71–75

    CAS  PubMed  Google Scholar 

  • Barry BW (2002) Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev 54(Suppl 1):S31–S40

    Article  CAS  PubMed  Google Scholar 

  • Bassett CA (1989) Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Crit Rev Biomed Eng 17(5):451–529

    CAS  PubMed  Google Scholar 

  • Bassett CA (1993) Beneficial effects of electromagnetic fields. J Cell Biochem 51(4):387–393

    Article  CAS  PubMed  Google Scholar 

  • Bassett CA, Pawluk RJ, Pilla AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184(136):575–577

    CAS  PubMed  Google Scholar 

  • Benson HAE, Cacetta R, Eijkenboom M, Edwards J (2007) Dermaportation treated skin is more permeable to Voltaren Emulgel. In: 8th World Congress on Inflammation, Copenhagen

    Google Scholar 

  • Benson HAE, Krishnan G, Edwards J, Liew YM, Wallace VP (2010) Enhanced skin permeation and hydration by magnetic field array: preliminary in-vitro and in-vivo assessment. J Pharm Pharmacol 62(6):696–701

    Article  CAS  PubMed  Google Scholar 

  • Cacetta R, Eijkenboom M, Edwards J, Namjoshi S, Benson HAE (2007) Increased transdermal delivery of local anaesthetics by the novel penetration enhancement technology Dermaportation; in vitro and in vivo assessment. Pharmaceutical Sciences World Congress, Amsterdam

    Google Scholar 

  • Callaghan MJ, Chang EI, Seiser N, Aarabi S, Ghali S, Kinnucan ER, Simon BJ, Gurtner GC (2008) Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg 121(1):130–141

    Article  CAS  PubMed  Google Scholar 

  • Colson DJ, Browett JP, Fiddian NJ, Watson B (1988) Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng 10(4):301–304

    Article  CAS  PubMed  Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW (2001) Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J Pharm Pharmacol 53(10):1311–1322

    Article  PubMed  Google Scholar 

  • Haddad JB, Obolensky AG, Shinnick P (2007) The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. J Altern Complement Med 13(5):485–490

    Article  PubMed  Google Scholar 

  • Krishnan G, Edwards J, Chen Y, Benson HAE (2010) Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro. J Pharm Sci 99(6):2724–2731

    Article  CAS  PubMed  Google Scholar 

  • Martiny K, Lunde M, Bech P (2010) Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression. Biol Psychiatry 68(2):163–169

    Article  PubMed  Google Scholar 

  • Matic M, Lazetic B, Poljacki M, Djuran V, Matic A, Gajinov Z (2009) Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals. Lasers Med Sci 24(3):321–327

    Article  PubMed  Google Scholar 

  • Milgram J, Shahar R, Levin-Harrus T, Kass P (2004) The effect of short, high intensity magnetic field pulses on the healing of skin wounds in rats. Bioelectromagnetics 25(4):271–277

    Article  PubMed  Google Scholar 

  • Mohammed YH (2013) Targeted topical delivery of peptides and small molecules to the skin. School of Pharmacy. Curtin University. Ph.D., Perth

    Google Scholar 

  • Murthy SN (1999) Magnetophoresis: an approach to enhance transdermal drug diffusion. Pharmazie 54(5):377–379

    CAS  PubMed  Google Scholar 

  • Murthy SN, Hiremath SR (1999) Effect of magnetic field on the permeation of salbutamol sulphate. Indian Drugs 36:663–664

    CAS  Google Scholar 

  • Murthy SN, Hiremath SR (2001) Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate. AAPS PharmSciTech 2(1):E-TN1

    Google Scholar 

  • Murthy SN, Sammeta SM, Bowers C (2010) Magnetophoresis for enhancing transdermal drug delivery: mechanistic studies and patch design. J Control Release 148(2):197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namjoshi S, Cacetta R, Edwards J, Benson HAE (2007) Liquid chromatography assay for 5-aminolevulinic acid: application to in vitro assessment of skin penetration via dermaportation. J Chromatogr B 852(1–2):49–55

    Article  CAS  Google Scholar 

  • Namjoshi S, Chen Y, Edwards J, Benson HA (2008) Enhanced transdermal delivery of a dipeptide by dermaportation. Biopolymers 90(5):655–662

    Article  CAS  PubMed  Google Scholar 

  • Pang L, Baciu C, Traitcheva N, Berg H (2001) Photodynamic effect on cancer cells influenced by electromagnetic fields. J Photochem Photobiol B 64(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Pittler MH, Brown EM, Ernst E (2007) Static magnets for reducing pain: systematic review and meta-analysis of randomized trials. CMAJ 177(7):736–742

    Article  PubMed  PubMed Central  Google Scholar 

  • Polk C, Postow E (1996) Handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton

    Google Scholar 

  • Prow TW (2012) Magnetophoresis and microneedle enhanced skin delivery of fluorescein. unpublished data

    Google Scholar 

  • Prow TW, Mohammed YH, Ansaldo AB, Benson HAE (2012) Topical microneedle drug delivery enhanced with magnetophoresis. Advances in Dermatological Sciences. p. 169–177, London, United Kingdom: Royal Society of Chemistry. doi:10.1039/9781849734639-00169

  • Sammeta SM, Repka MA, Murthy SN (2011) Magnetophoresis in combination with chemical enhancers for transdermal drug delivery. Drug Dev Ind Pharm 37(9):1076–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scardino MS, Swaim SF, Sartin EA, Steiss JE, Spano JS, Hoffman CE, Coolman SL, Peppin BL (1998) Evaluation of treatment with a pulsed electromagnetic field on wound healing, clinicopathologic variables, and central nervous system activity of dogs. Am J Vet Res 59(9):1177–1181

    CAS  PubMed  Google Scholar 

  • Sutbeyaz ST, Sezer N, Koseoglu F, Kibar S (2009) Low-frequency pulsed electromagnetic field therapy in fibromyalgia: a randomized, double-blind, sham-controlled clinical study. Clin J Pain 25(8):722–728

    Article  PubMed  Google Scholar 

  • Vallbona C, Richards T (1999) Evolution of magnetic therapy from alternative to traditional medicine. Phys Med Rehabil Clin N Am 10(3):729–754

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors thank the scientists who contributed to the research in particular Sarika Namjoshi, Gayathri Krishnan, Yousuf Mohammed and the staff at OBJ Pty. Ltd.

Heather Benson is a shareholder in OBJ Pty. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. E. Benson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benson, H.A.E., McIldowie, M., Prow, T. (2017). Magnetophoresis: Skin Penetration Enhancement by a Magnetic Field. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics