Skip to main content

Photoacoustic Waves as a Skin Permeation Enhancement Method

  • Chapter
  • First Online:

Abstract

The photoacoustic waves as a transdermal method consist in the rapid and efficient conversion of the energy of a laser pulse into a broadband and intense pressure wave capable of transiently permeabilizing the outer layers of the skin. Photoacoustic waves are efficiently generated by nanosecond pulsed laser excitation of piezophotonic materials in properly designed devices. The structure of this chapter takes the reader from the basics of photoacoustic wave generation, through the design of devices that optimize the efficiency of photoacoustic conversion, to the mechanisms of interaction of photoacoustic waves with skin components. The chapter closes with examples of the use of such devices to increase transepidermal water loss as well as skin delivery of drugs, such as the delivery of 800-kDa hyaluronic acid into the minipig skin. Such examples show that photoacoustic waves are a promising approach to fulfill the need for a safe, painless, efficient, and affordable skin permeation enhancement method.

This is a preview of subscription content, log in via an institution.

References

  • Al-Saidan SM, Barry BW et al (1998) Differential scanning calorimetry of human and animal stratum corneum membranes. Int J Pharm 168:17–22

    Article  CAS  Google Scholar 

  • Andrews S, Lee JW et al (2011) Recovery of skin barrier after stratum corneum removal by microdermabrasion. AAPS PharmSciTech 12:1393–1400

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaut LG, Caldwell RA et al (1992) Recent advances in photoacoustic calorimetry: theoretical basis and improvements in experimental design. Rev Sci Instrum 63:5381

    Article  CAS  Google Scholar 

  • Ball SM, Caussin J et al (2008) In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 35:193–202

    Article  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  CAS  PubMed  Google Scholar 

  • Bell AG (1880) On the production and reproduction of sound by light. Am J Sci 20:305–324

    Article  Google Scholar 

  • Biagi E, Margheri F et al (2001) Efficient laser-ultrasound generation by using heavily absorbing films as targets. IEEE Trans Ultrason Ferroelectr Freq Control 48:1669–1680

    Article  CAS  PubMed  Google Scholar 

  • Blume A (1993) Dynamic properties. In: Cevc G (ed) Phospholipids handbook. Marcel Dekker, New York, pp 455–509

    Google Scholar 

  • Boehler R, Kennedy GC (1977) Pressure dependence of the thermodynamical Grüneisen parameter of fluids. J Appl Phys 48:4183–4186

    Article  CAS  Google Scholar 

  • Bommannan D, Menon GK et al (1992) Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharm Res 9:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Buma T, Spisar M et al (2001) High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl Phys Lett 79:548–550

    Article  CAS  Google Scholar 

  • Carome EF, Clark NA et al (1964) Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients. Appl Phys Lett 4:95–97

    Article  CAS  Google Scholar 

  • Casalini R, Capaccioli S et al (2001) Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model. Phys Rev E Stat Nonlin Soft Matter Phys 63:031207

    Article  CAS  PubMed  Google Scholar 

  • Childs WH (2002) Thermomechanical properties of selected space-related materials. The Aerospace Corporation, Los Angeles

    Book  Google Scholar 

  • Dattelbaum DM, Jensen JD et al (2005) A novel method for static equation-of-state development: equation of state of a cross-linked poly(dimethylsiloxane) network tp 10 GPa. J Chem Phys 122:144903

    Article  PubMed  Google Scholar 

  • Doukas AG, Kollias N (2004) Transdermal delivery with a pressure wave. Adv Drug Deliv Rev 56:559–579

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Lorraine PW et al (2000) Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites. Review of Progress in Quantitative Nondestructive Evaluation. D. Thompson and D. Chimenti, AIP Conf. Proc. CP509: 287

    Google Scholar 

  • Fardel R, Nagel M et al (2009) Energy balance in a laser-induced forward transfer process studied by shadowgraphy. J Phys Chem C 113:11628–11633

    Article  CAS  Google Scholar 

  • Gay CL, Guy RH et al (1994) Characterization of low-temperature (i.e., <65 °C) lipid transitions in human stratum corneum. J Invest Dermatol 13:233–239

    Article  Google Scholar 

  • Gennis RB (1989) Biomembranes. Singer, New York

    Book  Google Scholar 

  • Golden GM, Guzek DB et al (1986) Lipid thermotropic transitions in human stratum corneum. J Invest Dermatol 86:255–259

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Baac HW et al (2011) Broad-band, high-efficiency optoacoustic generation using a novel photonic crystal-metallic structure. Proc SPIE 78992:78992C1–78992C8

    Google Scholar 

  • Gupta J, Prausnitz MP (2009) Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 35:1405–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta J, Gill HS et al (2011) Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release 154:148–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding CR (2004) The stratum corneum: structure and function in health and disease. Dermatol Ther 17:6–15

    Article  PubMed  Google Scholar 

  • Herwadkar A, Sachdeva V et al (2012) Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm 423:289–296

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Chen P et al (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt Res Appl 15:603–612

    Article  CAS  Google Scholar 

  • Kalluri H, Kolli CS et al (2011) Characterization of microchannels created by metal microneedles: formation and closure. AAPS J 13:473–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Karabutov AA, Savateeva EV et al (2000) Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J Appl Phys 87:2003–2014

    Article  CAS  Google Scholar 

  • Kim HS, Lim SH et al (2009) Skin barrier function recovery after diamond microdermabrasion. J Dermatol 36:529–533

    Article  PubMed  Google Scholar 

  • Kodama T, Hamblin MR et al (2000) Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys J 79:1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academics/Plenum, New York

    Book  Google Scholar 

  • Lee S, McAuliffe DJ et al (2001) Permeabilization and recovery of the stratum corneum in vivo: the synergy of photomechanical waves and sodium lauryl sulfate. Lasers Surg Med 29:145–150

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Choi KJ et al (2010) Penetration pathways induced by Low-frequency sonophoresis with physical and chemical enhancers: iron oxide nanoparticles versus lanthanum nitrates. J Invest Dermatol 130:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Levin J, Maibach H (2005) The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release 103:291–299

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Van Steeg TJ et al (2005) Cutaneous side-effects of transdermal iontophoresis with and without surfactant pretreatment: a single-blinded, randomized controlled trial. Br J Dermatol 153:404–412

    Article  CAS  PubMed  Google Scholar 

  • Menon GK, Elias PM (2001) The epidermal barrier and strategies for surmounting It: an overview. In: Hengge UR, Volc-Platzer B (eds) The skin and gene therapy. Spinger, Berlin, pp 3–26

    Chapter  Google Scholar 

  • Menon GK, Kollias N et al (2003) Ultrastructural evidence of stratum corneum permeabilization induced by photomechanical waves. J Invest Dermatol 121:104–109

    Article  CAS  PubMed  Google Scholar 

  • Millett JCF, Whiteman G et al (2011) Shear strength measurements in a shock loaded commercial silastomer. J Phys D Appl Phys 44:185403

    Article  Google Scholar 

  • O’Brien WD Jr (2007) Ultrasound – biophysics mechanisms. Prog Biophys Mol Biol 93:212–255

    Article  PubMed  Google Scholar 

  • Ogiso T, Ogiso H et al (1996) Phase transitions of rat stratum corneum lipids by an electron paramagnetic resonance study and relationship of phase states to drug penetration. Biochim Biophys Acta 1301:97–105

    Article  PubMed  Google Scholar 

  • Paliwal S, Menon GK et al (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Pan T-L, Wang P-W et al (2010) Systematic evaluations of skin damage irradiated by an erbium:YAG laser: histopathologic analysis, proteomic profiles, and cellular response. J Dermatol Sci 58:8–18

    Article  CAS  PubMed  Google Scholar 

  • Park HK, Kim D et al (1996) Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface. J Appl Phys 80:4072–4081

    Article  CAS  Google Scholar 

  • Paus R (2002) What is the ‘true’ function of the skin? Exp Dermatol 11:159–187

    Article  Google Scholar 

  • Pineiro M, Carvalho AL et al (1998) Photoacoustic measurements of porphyrin triplet state quantum yields and singlet oxygen efficiencies. Chem Eur J 4:2299

    Article  CAS  Google Scholar 

  • Prausnitz MP, Elias PM et al (2012) Skin barrier and transdermal drug delivery. In: Bolognia JL, Jorizzo JL, Schaffer JV (eds) Dermatology. Elsevier Health Sciences, St. Louis

    Google Scholar 

  • Rajan P, Grimes PE (2002) Skin barrier changes induced by aluminum oxide and sodium chloride microdermabrasion. Dermatol Surg 28:390–393

    PubMed  Google Scholar 

  • Sa GFF, Serpa C et al (2011) Device for efficient delivery of compounds to or through the skin or biological barriers, using light-absorbing thin films. Patent publication number: WO2012144916 A2. Applicant: University of Coimbra

    Google Scholar 

  • Sa GFF, Serpa C et al (2012a) Intense, high-frequency pressure waves produced with low laser fluences. Proc SPIE 8207:82070I–1

    Google Scholar 

  • Sa GFF, Serpa C et al (2012b) Mechanisms of interaction between very high-frequency photoacoustic waves and the skin. Proc SPIE 8553:85531Z

    Article  Google Scholar 

  • Sa GF, Serpa C et al (2013) Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. J Control Release 167(3):290–300

    Article  CAS  PubMed  Google Scholar 

  • Sanditov DS, Munkueva SB et al (2012) Grüneisen parameter and propagation velocities of acoustic waves in vitreous solids. Phys Solid State 54:1643–1647

    Article  CAS  Google Scholar 

  • Schaberle FA, Nunes RMD et al (2010) Analytical solution for time-resolved photoacoustic calorimetry data. A survey of mechanisms common in photochemistry. Photochem Photobiol Sci 9:812–822

    Article  CAS  PubMed  Google Scholar 

  • Serpa C, Schabauer J et al (2008) Photoacoustic measurement of electron injection efficiencies and energies from excited sensitizer dyes into nanocrystalline TiO2 films. J Am Chem Soc 130:8876–8877

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker SD, Vanderlick TK (2003) Material studies of lipid vesicles in the Lα and Lα-gel coexistence regimes. Biophys J 84:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigrist MW (1986) Laser generation of acoustic waves in liquids and gases. J Appl Phys 60:R83–R121

    Article  CAS  Google Scholar 

  • Simonin J-P (1995) On the mechanisms of in vitro and in vivo phonophoresis. J Control Release 33:125–141

    Article  CAS  Google Scholar 

  • Sundqvist B, Sandberg O et al (1977) The thermal properties of an epoxy resin at high pressure and temperature. J Phys D Appl Phys 10:1397–1403

    Article  CAS  Google Scholar 

  • Visuri SR, Campbell HL et al (2002) Optically generated ultrasound for enhanced drug delivery. Patent publication number: US6484052 B1. Applicant: The Regents of the University of California

    Google Scholar 

  • Vogel A, Noack J (1998) Shock wave energy and acoustic energy dissipation after laser-induced breakdown. Proc SPIE 3254:0277–786X

    Google Scholar 

  • von Gutfeld RJ, Melcher RL (1977) 20 MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces. Appl Phys Lett 30:257–259

    Article  Google Scholar 

  • White RM (1963) Generation of elastic waves by transient surface heating. J App Phys 34:3559–3567

    Article  Google Scholar 

  • Wickett R, Visscher M (2006) Structure and function of the epidermal barrier. Am J Infect Control 34:98–110

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by RedEmprendia, Red Universitaria Ibero-americana de Incubação de Empresas (AVCRI prize). We also acknowledge the support from Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the COMPETE program and from FEDER, European Union (PTDC/QUI/QUI/099730/2008). G. F. F. Sá also acknowledges FCT for a PhD grant (SFRH/BD/45555/2008). We greatly acknowledge M. J. Moreno and R. Cardoso for their contribution on the lipid preparation and fluorescence anisotropy measurements and A. P. Marques and P. Jesus in the production of the piezophotonic materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo F. F. Sá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sá, G.F.F., Serpa, C., Arnaut, L.G. (2017). Photoacoustic Waves as a Skin Permeation Enhancement Method. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics