Skip to main content

Models, Methods, and Measurements in Transdermal Drug Delivery

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin

Abstract

Transdermal delivery of systemic therapeutics is an attractive alternative to conventional needle-based methods. Several physical and chemical strategies for skin permeabilization have been proposed to facilitate the transport of drug molecules across the skin barrier. Validation of a particular method and demonstration of its efficacy require the selection of a representative skin model as well as an appropriate system to measure drug transport. This review summarizes different skin models used to study drug transport across the skin as well as measurement techniques used to quantify the amount of transport. A careful consideration of both choices in development of transdermal delivery systems is critical to success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham W, Downing DT (1989) Permeability studies on model membranes prepared from stratum-corneum lipids. J Invest Dermatol 92(3):393

    Article  Google Scholar 

  • Abraham W, Wertz PW et al (1985) Linoleate-rich acylglucosylceramides of pig epidermis: structure determination by proton magnetic resonance. J Lipid Res 26:761–766

    CAS  PubMed  Google Scholar 

  • Ainsworth M (1960) Methods for measuring percutaneous absorption. J Soc Cosmet Chem 11:69–78

    CAS  Google Scholar 

  • Akomeah FK, Martin GP et al (2007) Variability in human skin permeability in vitro: comparing penetrants with different physicochemical properties. J Pharm Sci 96(4):824–834

    Article  CAS  PubMed  Google Scholar 

  • Alberti I, Kalia YN et al (2001a) Effect of ethanol and isopropyl myristate on the availability of topical terbinafine in human stratum corneum, in vivo. Int J Pharm 219(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  • Alberti I, Kalia YN et al (2001b) In vivo assessment of enhanced topical delivery of terbinafine to human stratum corneum. J Control Release 71(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Alberti I, Kalia YN et al (2001c) Assessment and prediction of the cutaneous bioavailability of topical terbinafine, in vivo, in man. Pharm Res 18(10):1472–1475

    Article  CAS  PubMed  Google Scholar 

  • Aramaki Y, Arima H et al (2003) Intradermal delivery of antisense oligonucleotides by the pulse depolarization iontophoretic system. Biol Pharm Bull 26(10):1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Artusi M, Nicoli S et al (2004) Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro. J Pharm Sci 93(10):2431–2438

    Article  CAS  PubMed  Google Scholar 

  • Astley JP, Levine M (1976) Effect of dimethyl-sulfoxide on permeability of human skin in vitro. J Pharm Sci 65(2):210–215

    Article  CAS  PubMed  Google Scholar 

  • Atrux-Tallau N, Huynh NTT et al (2008) Effects of physical and chemical treatments upon biophysical properties and micro-relief of human skin. Arch Dermatol Res 300(5):243–251

    Article  CAS  PubMed  Google Scholar 

  • Audus KL, Bartel RL et al (1990) The use of cultured epithelial and endothelial-cells for drug transport and metabolism studies. Pharm Res 7(5):435–451

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Bravo HA, Quintanar-Guerrero D et al (2003) Effects of sucrose oleate and sucrose laureate on in vivo human stratum corneum permeability. Pharm Res 20(8):1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Bach M, Lippold BC (1998) Percutaneous penetration enhancement and its quantification. Eur J Pharm Biopharm 46(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Baden HP, Pathak MA (1967) The metabolism and function of urocanic acid in skin. J Invest Dermatol 48:11–17

    Article  CAS  PubMed  Google Scholar 

  • Baden HP, Goldsmith EL et al (1973) A comparative study of the physiochemical properties of human keratinized tissues. Biochim Biophys Acta 322:269–278

    Article  CAS  PubMed  Google Scholar 

  • Bakand S, Winder C et al (2006) An experimental in vitro model for dynamic direct exposure of human cells to airborne contaminants. Toxicol Lett 165(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Balsari AL, Morelli D et al (1994) Protection against doxorubicin-induced alopecia in rats by liposome-entrapped monoclonal-antibodies. FASEB J 8(2):226–230

    CAS  PubMed  Google Scholar 

  • Barker CL, McHale MT et al (2004) The development and characterization of an in vitro model of psoriasis. J Invest Dermatol 123(5):892–901

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (1983) Dermatological formulations Percutaneous absorption. Marcel Dekker, New York

    Google Scholar 

  • Barry BW (1988) Action of skin penetration enhancers – the lipid protein partitioning theory. Int J Cosmet Sci 10(6):281–293

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (1991) Lipid-protein-partitioning theory of skin penetration enhancement. J Control Release 15(3):237–248

    Article  CAS  Google Scholar 

  • Barry BW (2001a) Is transdermal drug delivery research still important today? Drug Discov Today 6(19):967–971

    Article  PubMed  Google Scholar 

  • Barry BW (2001b) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14(2):101–114

    Article  CAS  PubMed  Google Scholar 

  • Barry BW (2004) Breaching the skin’s barrier to drugs. Nat Biotechnol 22(2):165–167

    Article  CAS  PubMed  Google Scholar 

  • Barry BW, Brace AR (1977) Permeation of estrone, estradiol, estriol and dexamethasone across cellulose-acetate membrane. J Pharm Pharmacol 29(7):397–400

    Article  CAS  PubMed  Google Scholar 

  • Barry BW, Eleini DID (1976) Influence of nonionic surfactants on permeation of hydrocortisone, dexamethasone, testosterone and progesterone across cellulose-acetate membrane. J Pharm Pharmacol 28(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Beare JM, Cheeseman EA et al (1958) The pH of the skin surface of children with seborrheic dermatitis compared with unaffected children. Br J Dermatol 70:233

    Article  CAS  PubMed  Google Scholar 

  • Beastall J, Guy RH et al (1986) The influence of urea on percutaneous-absorption. Pharm Res 3(5):294–297

    Article  CAS  PubMed  Google Scholar 

  • Bell E, Ehrlich HP et al (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211(4486):1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shabat S, Baruch N et al (2007) Conjugates of unsaturated fatty acids with propylene glycol as potentially less-irritant skin penetration enhancers. Drug Dev Ind Pharm 33(11):1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Berenson GS, Burch GE (1951) Studies of diffusion of water through dead human skin – the effect of different environmental states and of chemical alterations of the epidermis. Am J Trop Med 31(6):842–853

    CAS  Google Scholar 

  • Bhandari KH, Lee DX et al (2008) Evaluation of skin permeation and accumulation profiles of a highly lipophilic fatty ester. Arch Pharm Res 31(2):242–249

    Article  CAS  PubMed  Google Scholar 

  • Blank IH (1939) Measurement of pH of the skin surface. J Invest Dermatol 2:67

    Article  CAS  Google Scholar 

  • Blank IH (1952) Factors which influence the water content of stratum corneum. J Invest Dermatol 18:433–440

    Article  CAS  PubMed  Google Scholar 

  • Blank IH, Scheuplein RJ (1973) Mechanism of percutaneous absorption. IV. Penetration of nonelectrolytes (alcohols) from aqueous solutions and from pure liquids. J Invest Dermatol 60(5):286–296

    Article  PubMed  Google Scholar 

  • Bond JR, Barry BW (1988a) Damaging effect of acetone on the permeability barrier of hairless mouse skin compared with that of human-skin. Int J Pharm 41(1–2):91–93

    Article  CAS  Google Scholar 

  • Bond JR, Barry BW (1988b) Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human-skin. J Invest Dermatol 90(6):810–813

    Article  CAS  PubMed  Google Scholar 

  • Bond JR, Barry BW (1988c) Limitations of hairless mouse skin as a model for in vitro permeation studies through human-skin – hydration damage. J Invest Dermatol 90(4):486–489

    Article  CAS  PubMed  Google Scholar 

  • Bonina FP, Montenegro L et al (1993) In-vitro percutaneous-absorption evaluation of phenobarbital through hairless mouse, adult and premature human skin. Int J Pharm 98(1–3):93–99

    CAS  Google Scholar 

  • Borgia SL, Schupp P et al (2008) In vitro skin absorption and drug release – a comparison of six commercial prednicarbate preparations for topical use. Eur J Pharm Biopharm 68(2):380–389

    Article  CAS  Google Scholar 

  • Bos JD, Meinardi MHM (2000) The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Bosman IJ, Lawant AL et al (1996) Novel diffusion cell for in vitro transdermal permeation, compatible with automated dynamic sampling. J Pharm Biomed Anal 14(8–10):1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Botham PA (2004) The validation of in vitro methods for skin irritation. Toxicol Lett 149(1–3):387–390

    Article  CAS  PubMed  Google Scholar 

  • Bouwstra JA (1997) The skin, a well organized membrane. Colloids Surf A 123–124:403–413

    Article  Google Scholar 

  • Bouwstra JA, Gooris GS et al (1998) Role of ceramide 1 in the molecular organisation of the stratum corneum lipids. J Lipid Res 39:186–196

    CAS  PubMed  Google Scholar 

  • Boyce ST, Christianson DJ et al (1988) Structure of a collagen-gag dermal skin substitute optimized for cultured human epidermal-keratinocytes. J Biomed Mater Res 22(10):939–957

    Article  CAS  PubMed  Google Scholar 

  • Breathnach AS, Goodman T et al (1973) Freeze fracture replication of cells of stratum corneum of human epidermis. J Anat 114:65–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breau LM, McGrath PJ et al (2001) Facial expression of children receiving immunizations: a principal components analysis of the child facial coding system. Clin J Pain 17(2):178–186

    Article  CAS  PubMed  Google Scholar 

  • Bronaugh RL, Collier S (1991) Preparation of human and animal skin. In: Bronaugh RL, Maibach HI (eds) In vitro percutaneous absorption: principles, fundamentals, and applications. CRC Press, Boca Raton, pp 16

    Google Scholar 

  • Bronaugh RL, Stewart RF (1984) Methods for in vitro percutaneous-absorption studies. 3. Hydrophobic compounds. J Pharm Sci 73(9):1255–1258

    Article  CAS  PubMed  Google Scholar 

  • Bronaugh RL, Stewart RF (1986) Methods for in vitro percutaneous-absorption studies. 6. Preparation of the barrier layer. J Pharm Sci 75(5):487–491

    Article  CAS  PubMed  Google Scholar 

  • Bronaugh RL, Stewart RF et al (1982) Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol 62(3):481–488

    Article  CAS  PubMed  Google Scholar 

  • Bronaugh RL, Stewart RF et al (1983) Differences in permeability of rat skin related to sex and body site. J Soc Cosmet Chem 34(3):127–135

    CAS  Google Scholar 

  • Bronaugh RL, Stewart RF et al (1986) Methods for in vitro percutaneous-absorption studies. 7. Use of excised human-skin. J Pharm Sci 75(11):1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Brown DWC, Ulsamer AG (1975) Percutaneous penetration of hexachlorophene as related to receptor solutions. Food Cosmet Toxicol 13(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Burnette RR, Bagniefski TM (1988) Influence of constant current iontophoresis on the impedance and passive na + permeability of excised nude-mouse skin. J Pharm Sci 77(6):492–497

    Article  CAS  PubMed  Google Scholar 

  • Carr RD, Wieland RG (1966) Corticosteroid reservoir in stratum corneum. Arch Dermatol 94(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Caspers PJ, Williams AC et al (2002) Monitoring the penetration enhancer dimethyl sulfoxide in human stratum corneum in vivo by confocal Raman spectroscopy. Pharm Res 19(10):1577–1580

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Langer R (1998) Oral particulate delivery: status and future trends. Adv Drug Deliv Rev 34(2–3):339–350

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Shen YY et al (2006) Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 24(4):455–460

    Article  CAS  PubMed  Google Scholar 

  • Chilcott RP, Dalton CH et al (2002) Transepidermal water loss does not correlate with skin barrier function in vitro. J Invest Dermatol 118(5):871–875

    Article  CAS  PubMed  Google Scholar 

  • Cho CW, Choi JS et al (2008) Development of the ambroxol gels for enhanced transdermal delivery. Drug Dev Ind Pharm 34(3):330–335

    Article  CAS  PubMed  Google Scholar 

  • Christ A, Szurkowski J et al (2001) Drug penetration into a membrane investigated by photoacoustic and FTIR-ATR spectroscopy. Anal Sci 17:S371–S373

    CAS  Google Scholar 

  • Coldman MF, Poulsen BJ et al (1969) Enhancement of percutaneous absorption by use of volatile – nonvolatile systems as vehicles. J Pharm Sci 58(9):1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Cooper ER (1982) Effect of decylmethyl sulfoxide on skin penetration. In: Mittal KL, Fendler EJ (eds) Solution behaviour of surfactants: theoretical and applied aspects. Plenum Press, New York, pp 1505–1516

    Google Scholar 

  • Cornwell PA, Barry BW (1995) Effects of penetration enhancer treatment on the statistical distribution of human skin permeabilities. Int J Pharm 117(1):101–112

    Article  CAS  Google Scholar 

  • Corrigan OI, Farvar MA et al (1980) Drug membrane-transport enhancement using high-energy drug polyvinylpyrrolidone (PVP) co-precipitates. Int J Pharm 5(3):229–238

    Article  CAS  Google Scholar 

  • Coutelegros A, Maitani Y et al (1992) Combined effects of ph, cosolvent and penetration enhancers on the in vitro buccal absorption of propranolol through excised hamster-cheek pouch. Int J Pharm 84(2):117–128

    Article  CAS  Google Scholar 

  • Crank J (1975) The Mathematics of diffusion. Oxford University Press, Inc., New York

    Google Scholar 

  • Cronin MTD, Dearden JC et al (1998) An investigation of the mechanism of flux across polydimethylsiloxane membranes by use of quantitative structure-permeability relationships. J Pharm Pharmacol 50(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Crooke RM, Crooke ST et al (1996) Effect of antisense oligonucleotides on cytokine release from human keratinocytes in an in vitro model of skin. Toxicol Appl Pharmacol 140(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Pugh WJ et al (2001) Probing the effect of vehicles on topical delivery: understanding the basic relationship between solvent and solute penetration using silicone membranes. Pharm Res 18(7):999–1005

    Article  CAS  PubMed  Google Scholar 

  • Curdy C, Kalia YN et al (2002) Post-iontophoresis recovery of human skin impedance in vivo. Eur J Pharm Biopharm 53(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Curdy C, Naik A et al (2004) Non-invasive assessment of the effect of formulation excipients on stratum corneum barrier function in vivo. Int J Pharm 271(1–2):251–256

    Article  CAS  PubMed  Google Scholar 

  • Davis DA (1990) TestSkin racks up in vitro converts. Drug Cosmet Indust 146(5):40

    Google Scholar 

  • de Jager M, Groenink W et al (2006a) A novel in vitro percutaneous penetration model: evaluation of barrier properties with P-aminobenzoic acid and two of its derivatives. Pharm Res 23(5):951–960

    Article  CAS  PubMed  Google Scholar 

  • de Jager M, Groenink W et al (2006b) Preparation and characterization of a stratum corneurn substitute for in vitro percutaneous penetration studies. Biochim Biophys Acta Biomembranes 1758(5):636–644

    Article  CAS  Google Scholar 

  • de Kruyff B, van Dijck PWM et al (1974) Non random distribution of cholesterol in phosphatidylcholine bilayers. Biochim Biophys Acta 356:1–7

    Article  PubMed  Google Scholar 

  • Delgado-Charro MB, Guy RH (2001) Transdermal iontophoresis for controlled drug delivery and non-invasive monitoring. STP Pharma Sci 11(6):403–414

    CAS  Google Scholar 

  • Demeere ALJ, Tomlinson E (1984) Physicochemical description of the absorption rate of a solute between water and 2,2,4-trimethylpentane. Int J Pharm 22(2–3):177–196

    Article  CAS  Google Scholar 

  • Denet AR, Vanbever R et al (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56(5):659–674

    Article  CAS  PubMed  Google Scholar 

  • Dewhurst DG, Williams A (1993) Frog-skin – a computer-simulation of experiments performed on frog-skin in-vitro to investigate the epithelial transport of ions. ATLA Altern Lab Anim 21(3):350–358

    Google Scholar 

  • Dick IP, Scott RC (1992) Pig ear skin as an in vitro model for human skin permeability. J Pharm Pharmacol 44(8):640–645

    Article  CAS  PubMed  Google Scholar 

  • Domashenko A, Gupta S et al (2000) Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 18(4):420–423

    Article  CAS  PubMed  Google Scholar 

  • Downing DT (1992) Lipid and protein structures in the permeability barrier of mammalian epidermis. J Lipid Res 33:301–313

    CAS  PubMed  Google Scholar 

  • Drachman D (1989) Novel drug delivery systems-opportunities and caveats. Neurobiol Aging 10(5):632–633

    Article  CAS  PubMed  Google Scholar 

  • Draize JH (1942) The determination of pH of the skin of man and common laboratory animals. J Invest Dermatol 5:77

    Article  CAS  Google Scholar 

  • Dreher F, Fouchard F et al (2002) Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or alpha-tocopherol applied on human skin models or human skin ex vivo at finite doses. Skin Pharmacol Appl Skin Physiol 15:40–58

    Article  CAS  PubMed  Google Scholar 

  • Du Plessis J, Pugh WJ et al (2002) The effect of the nature of H-bonding groups on diffusion through PDMS membranes saturated with octanol and toluene. Eur J Pharm Sci 15(1):63–69

    Article  PubMed  Google Scholar 

  • Dugard PH, Scheuple RJ (1973) Effects of ionic surfactants on permeability of human epidermis – electrometric study. J Invest Dermatol 60(5):263–269

    Article  CAS  PubMed  Google Scholar 

  • Dugard PH, Walker M et al (1984) Absorption of some glycol ethers through human-skin in vitro. Environ Health Perspect 57:193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujardin N, Staes E et al (2002) In vivo assessment of skin electroporation using square wave pulses. J Control Release 79(1–3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Duncan EJ, Brown A, Lundy P, Sawyer TW, Hamilton M, Hill I, Conley JD (2002) Site-specific percutaneous absorption of methyl salicylate and VX in domestic swine. J Appl Toxicol 22(3):141–148

    Article  CAS  PubMed  Google Scholar 

  • Dupuis D, Rougier A et al (1986) In vivo relationship between percutaneous absorption and transepidermal water loss according to anatomic site in man. J Soc Cosmet Chem 37(5):351–357

    CAS  Google Scholar 

  • Dyer A, Hayes GG et al (1979) Diffusion through skin and model systems. Int J Cosmet Sci 1(2):91–100

    Article  CAS  PubMed  Google Scholar 

  • Eder I, Müller-Goymann CC (1995) In vivo amino acid extraction from human stratum corneum as indicator for penetration enhancing properties of oleic acid and isopropylmyristate. Pharm Pharmacol Lett 1:14–17

    Google Scholar 

  • El Ghalbzouri A, Lamme EN et al (2004) The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 25(15):2987–2996

    Article  PubMed  CAS  Google Scholar 

  • Elewski BE (2007) Percutaneous absorption kinetics of topical metronidazole formulations in vitro in the human cadaver skin model. Adv Ther 24(2):239–246

    Article  CAS  PubMed  Google Scholar 

  • Elgorashi AS, Heard CM et al (2008) Transdermal delivery enhancement of haloperidol from gel formulations by 1,8-cineole. J Pharm Pharmacol 60(6):689–692

    Article  CAS  PubMed  Google Scholar 

  • Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65:180–191

    Article  CAS  PubMed  Google Scholar 

  • Elias PM, McNutt NS et al (1977) Membrane alterations during cornification of mammalian squamous epithelia: a freeze-fracture, tracer and thin-section study. Anat Rec 189:577–594

    Article  CAS  PubMed  Google Scholar 

  • Elias PM, Brown BE et al (1980) The permeability barrier in essential fatty-acid deficiency – evidence for a direct role for linoleic-acid in barrier function. J Invest Dermatol 74(4):230–233

    Article  CAS  PubMed  Google Scholar 

  • Elias PM, Cooper ER et al (1981) Percutaneous transport in relation to stratum-corneum structure and lipid-composition. J Invest Dermatol 76(4):297–301

    Article  CAS  PubMed  Google Scholar 

  • Elyan BM, Sidhom MB et al (1996) Evaluation of the effect of different fatty acids on the percutaneous absorption of metaproterenol sulfate. J Pharm Sci 85(1):101–105

    Article  CAS  PubMed  Google Scholar 

  • Engström,S, Forslind B et al (1995) Lipid polymorphism-a key to the understanding of skin penetration. In: Brain KR, James VJ, Walters KA (eds) Proceedings of prediction of percutaneous penetration, vol 4b. STS Publishing Ltd., Cardiff, pp 163166

    Google Scholar 

  • Escobar-Chavez JJ, Quintanar-Guerrero D et al (2005) In vivo skin permeation of sodium naproxen formulated in pluronic F-127 gels: effect of Azone (R) and Transcutol (R). Drug Dev Ind Pharm 31(4–5):447–454

    Article  CAS  PubMed  Google Scholar 

  • Faller C, Bracher M (2002) Reconstructed skin kits: reproducibility of cutaneous irritancy testing. Skin Pharmacol Appl Skin Physiol 15:74–91

    Article  CAS  PubMed  Google Scholar 

  • Farinha A, Toscano C et al (2003) Permeation of naproxen from saturated solutions and commercial formulations through synthetic membranes. Drug Dev Ind Pharm 29(4):489–494

    Article  CAS  PubMed  Google Scholar 

  • Feingold K, Qiang M et al (1990) Cholesterol synthesis is required for cutaneous barrier function in mice. J Clin Invest 86:1738–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenske DB, Thewalt JL et al (1994) Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers. Biophys J 67:1562–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fettiplace R, Haydon DA (1980) Water permeability of lipid membranes. Phys Rev 60:510–550

    CAS  Google Scholar 

  • Flamand N, Marrot L et al (2006) Development of genotoxicity test procedures with Episkin®, a reconstructed human skin model: towards new tools for in vitro risk assessment of dermally applied compounds? Mut Res (Genetic Toxicology and Environmental Mutagenesis) 606(1–2):39–51

    Google Scholar 

  • Fluhr J, Kao J et al (2001) Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 117:44–51

    Article  CAS  PubMed  Google Scholar 

  • Fluhr JW, Feingold KR et al (2006) Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 15(7):483–492

    Article  PubMed  Google Scholar 

  • Flynn GL (1985) Mechanism of percutaneous absorption from physicochemical evidence. In: Bronaugh RL, Maibach H (eds) Percutaneous absorption: mechanisms-methodology-drug delivery. Marcel Dekker, New York, pp 17–42

    Google Scholar 

  • Flynn GL, Smith EW (1971) Membrane diffusion I: design and testing of a new multifeatured diffusion cell. J Pharma Sci 60(11):1713–1717

    Article  CAS  Google Scholar 

  • Foldvari M, Oguejiofor CJ et al (1998) Transcutaneous delivery of prostaglandin E1: in vitro and laser doppler flowmetry study. J Pharm Sci 87(6):721–725

    Article  CAS  PubMed  Google Scholar 

  • Foreman MI, Kelly I (1976) The diffusion of nandrolone through hydrated human cadaver skin. Br J Dermatol 95(3):265–270

    Article  CAS  PubMed  Google Scholar 

  • Foreman MI, Picton W et al (1979) Effect of topical crude coal-tar treatment on unstimulated hairless hamster skin. Br J Dermatol 100(6):707–715

    Article  CAS  PubMed  Google Scholar 

  • Forslind B (1994) A domain mosaic model of the skin barrier. Acta Derm Venereol 74:1–6

    CAS  PubMed  Google Scholar 

  • Fransson J, Heffler LC et al (1998) Culture of human epidermal Langerhans cells in a skin equivalent. Br J Dermatol 139(4):598–604

    Article  CAS  PubMed  Google Scholar 

  • Frantz SW (1990) Instrumentation and methodology for in vitro diffusion cells. In: Kemppainen BW, Reifenrath WG (eds) Methods for skin absorption. CRC Press, Boca Raton, pp 35–59

    Google Scholar 

  • Franz TJ (1975) Percutaneous absorption – relevance of in vitro data. J Invest Dermatol 64(3):190–195

    Article  CAS  PubMed  Google Scholar 

  • Franz TJ (1978) The finite dose technique as a valid in vitro model for the study of percutaneous absorption in man. Curr Probl Dermatol 7:58–68

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson T (1961) Studies on percutaneous absorption of parathion and paraoxon. 2. Distribution of 32p-labelled parathion within skin. Acta Derm Venereol 41(5):344

    Google Scholar 

  • Friberg SE, Kayali I (1989) Water evaporation rates from a model of stratum-corneum lipids. J Pharm Sci 78(8):639–643

    Article  CAS  PubMed  Google Scholar 

  • Friberg SE, Kayali I et al (1990) Water permeation of reaggregated stratum-corneum with model lipids. J Invest Dermatol 94(3):377–380

    Article  CAS  PubMed  Google Scholar 

  • Friend DR (1992) In vitro skin permeation techniques. J Control Release 18(3):235–248

    Article  CAS  Google Scholar 

  • Frum Y, Eccleston GM et al (2007) Evidence that drug flux across synthetic membranes is described by normally distributed permeability coefficients. Eur J Pharm Biopharm 67(2):434–439

    Article  CAS  PubMed  Google Scholar 

  • Galey WR, Lonsdale HK et al (1976) In vitro permeability of skin and buccal mucosa to selected drugs and tritiated-water. J Invest Dermatol 67(6):713–717

    Article  CAS  PubMed  Google Scholar 

  • Goates CY, Knutson K (1993) Enhanced permeation and stratum-corneum structural alterations in the presence of dithiothreitol. Biochim Biophys Acta 1153(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Gotter B, Faubel W et al (2008) Optical methods for measurements of skin penetration. Skin Pharmacol Physiol 21(3):156–165

    Article  CAS  PubMed  Google Scholar 

  • Grasso P, Lansdown AB (1972) Methods of measuring, and factors affecting, percutaneous absorption. J Soc Cosmet Chem 23(8):481

    CAS  Google Scholar 

  • Gray GM, Yardley HJ (1975) Lipid compositions of cells isolated from pig, human, and rat epidermis. J Lipid Res 16(6):434–440

    CAS  PubMed  Google Scholar 

  • Green H, Kehinde O et al (1979) Growth of cultured human epidermal-cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76(11):5665–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green H, Fuchs E et al (1982) Differentiated structural components of the keratinocyte. Cold Spring Harbor Symp Quant Biol 1:293–301

    Article  Google Scholar 

  • Gschwind H-P, Waldmeier F et al (2008) Pimecrolimus: skin disposition after topical administration in minipigs in vivo and in human skin in vitro. Eur J Pharm Sci 33(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Gummer CL, Maibach HI (1991) Diffusion cell design. In: Bronaugh RL, Maibach HI (eds) In vitro percutaneous absorption: principles, fundamentals, and applications. CRC Press, Boca Raton, pp 7–16

    Google Scholar 

  • Gummer CL, Hinz RS et al (1987) The skin penetration cell – a design update. Int J Pharm 40(1–2):101–104

    Article  Google Scholar 

  • Guy RH (1996) Current status and future prospects of transdermal drug delivery. Pharm Res 13(12):1765–1769

    Article  CAS  PubMed  Google Scholar 

  • Gysler A, Kleuser B et al (1999) Skin penetration and metabolism of topical glucocorticoids in reconstructed epidermis and in excised human skin. Pharm Res 16(9):1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J, Ridout G (1987) Development of model membranes for percutaneous absorption measurements. I. Isopropyl myristate. Int J Pharm 39(1–2):149–156

    Article  CAS  Google Scholar 

  • Hadgraft J, Ridout G (1988) Development of model membranes for percutaneous absorption measurements. II. Dipalmitoyl phosphatidylcholine, linoleic acid and tetradecane. Int J Pharm 42(1–3):97–104

    Article  CAS  Google Scholar 

  • Hai NT, Kim J et al (2008) Formulation and biopharmaceutical evaluation of transdermal patch containing benztropine. Int J Pharm 357(1–2):55–60

    Article  CAS  PubMed  Google Scholar 

  • Haigh JM, Smith EW (1994) The selection and use of natural and synthetic membranes for in-vitro diffusion experiments. Eur J Pharm Sci 2(5–6):311–330

    Article  CAS  Google Scholar 

  • Harrison SM, Barry BW et al (1984) Effects of freezing on human-skin permeability. J Pharm Pharmacol 36(4):261–262

    Article  CAS  PubMed  Google Scholar 

  • Hashimot K (1971a) Demonstration of intercellular spaces of human eccrine sweat gland by lanthanum. 1. Secretory coil. J Ultrastruct Res 36(1–2):249

    Google Scholar 

  • Hashimot K (1971b) Demonstration of intercellular spaces of human eccrine sweat gland by lanthanum. 2. Duct. J Ultrastruct Res 37(5–6):504

    Google Scholar 

  • Hashimot K, Gross BG et al (1965) Ultrastructure of skin of human embryos. i. Intraepidermal eccrine sweat duct. J Invest Dermatol 45(3):139

    Google Scholar 

  • Hawkins GS, Reifenrath WG (1986) Influence of skin source, penetration cell fluid, and partition-coefficient on in vitro skin penetration. J Pharm Sci 75(4):378–381

    Article  CAS  PubMed  Google Scholar 

  • Hayden PJ, Burnham B et al (2004) Wound healing response or a full thickness in vitro human skin equivalent (EpiDerm-FT 200) after solar UV-irradiation. J Invest Dermatol 122(3):A141

    Google Scholar 

  • Hayden PJ, Petrali JP et al (2005) Development of a full thickness in vitro human skin equivalent (EpiDerm-FT) for sulfur mustard research. J Invest Dermatol 124(4):A29

    Google Scholar 

  • He W, Guo XX et al (2008) Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int J Pharm 356(1–2):82–87

    Article  CAS  PubMed  Google Scholar 

  • Hedberg CL, Wertz PW et al (1988) The time course of biosynthesis of epidermal lipids. J Invest Dermatol 91(2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Herkenne C, Alberti I et al (2008) In vivo methods for the assessment of topical drug bioavailability. Pharm Res 25(1):87–103

    Article  CAS  PubMed  Google Scholar 

  • Hinz RS, Hodson CD et al (1989) In vitro percutaneous penetration – evaluation of the utility of hairless mouse skin. J Invest Dermatol 93(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Hoelgaard A, Mollgaard B (1982) Permeation of linoleic-acid through skin in vitro. J Pharm Pharmacol 34(9):610–611

    Article  CAS  PubMed  Google Scholar 

  • Holbrook KA, Odland GF (1974) Regional differences in thickness (cell layers) of human stratum-corneum – ultrastructural analysis. J Invest Dermatol 62(4):415–422

    Article  CAS  PubMed  Google Scholar 

  • Holland JM, Kao JY et al (1984) A multisample apparatus for kinetic evaluation of skin penetration in vitro – the influence of viability and metabolic status of the skin. Toxicol Appl Pharmacol 72(2):272–280

    Article  CAS  PubMed  Google Scholar 

  • Holland DB, Bojar RA et al (2008) Microbial colonization of an in vitro model of a tissue engineered human skin equivalent – a novel approach. FEMS Microbiol Lett 279(1):110–115

    Article  CAS  PubMed  Google Scholar 

  • Hou SYE, Flynn GL (1997) Influences of 1-dodecylazacycloheptan-2-one on permeation of membranes by weak electrolytes. 1. Theoretical analysis of weak electrolyte diffusion through membranes and studies involving silicone rubber membranes. J Pharm Sci 86(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Houk J, Guy RH (1988) Membrane models for skin penetration studies. Chem Rev 88(3):455–471

    Article  CAS  Google Scholar 

  • Hueber F, Besnard M et al (1994) Percutaneous-absorption of estradiol and progesterone in normal and appendage-free shin of the hairless rat – lack of importance of nutritional blood-flow. Skin Pharmacol 7(5):245–256

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF, Fisher HL et al (1994) Effect of age on the in-vitro percutaneous-absorption of phenols in mice. Toxicol In Vitro 8(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Kato Y et al (2007) Involvement of organic anion transport system in transdermal absorption of flurbiprofen. J Control Release 124(1–2):60–68

    Article  CAS  PubMed  Google Scholar 

  • Jacobi U, Kaiser M et al (2007) Porcine ear skin: an in vitro model for human skin. Skin Res Technol 13(1):19–24

    Article  PubMed  Google Scholar 

  • Kalia YN, Guy RH (1997) Interaction between penetration enhancers and iontophoresis: effect on human skin impedance in vivo. J Control Release 44(1):33–42

    Article  CAS  Google Scholar 

  • Kalia YN, Nonato LB et al (1996) The effect of iontophoresis on skin barrier integrity: non-invasive evaluation by impedance spectroscopy and transepidermal water loss. Pharm Res 13(6):957–960

    Article  CAS  PubMed  Google Scholar 

  • Kandarova H, Liebsch M et al (2006) Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol In Vitro 20(5):547–559

    Article  CAS  PubMed  Google Scholar 

  • Kandarova H, Richter H et al (2007) Stratum corneum architecture of reconstructed human skin models monitored by fluorescent confocal laser scanning microscopy. Laser Phys Lett 4(4):308–311

    Article  Google Scholar 

  • Kane A, Lloyd J et al (1999) Transmission of hepatitis B, hepatitis C and human immunodeficiency viruses through unsafe injections in the developing world: model-based regional estimates. Bull World Health Organ 77(10):801–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanikkannan N, Singh M (2002) Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int J Pharm 248(1–2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Kao J, Hall J et al (1983) Quantitation of cutaneous toxicity – an in vitro approach using skin organ-culture. Toxicol Appl Pharmacol 68(2):206–217

    Article  CAS  PubMed  Google Scholar 

  • Kao J, Hall J et al (1988) In vitro percutaneous-absorption in mouse skin – influence of skin appendages. Toxicol Appl Pharmacol 94(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Mitragotri S (2003) Dependence of skin permeability on contact area. Pharm Res 20(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Jain A et al (2004) Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol 22(2):192–197

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Jain A et al (2005) Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci U S A 102(13):4688–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karande P, Jain A et al (2006a) Relationships between skin’s electrical impedance and permeability in the presence of chemical enhancers. J Control Release 110(2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Jain A et al (2006b) Synergistic combinations of penetration enhancers and their discovery by high-throughput screening. In: Katdare A, Chaubal M (eds) Excipient development for pharmaceutical, biotechnology, and drug delivery systems. Informa Healthcare, New York/London

    Google Scholar 

  • Kermode M (2004) Unsafe injections in low-income country health settings: need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot Int 19(1):95–103

    Article  PubMed  Google Scholar 

  • Kietzmann M, Loscher W et al (1993) The isolated-perfused bovine udder as an in-vitro model of percutaneous drug absorption skin viability and percutaneous-absorption of dexamethasone, benzoyl peroxide, and etofenamate. J Pharmacol Toxicol Methods 30(2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Park JH et al (2008) Synergistic enhancement of skin permeability by N-lauroylsarcosine and ethanol. Int J Pharm 352(1–2):129–138

    Article  CAS  PubMed  Google Scholar 

  • Kitson N, Thewalt J et al (1994) A model membrane approach to the epidermal permeability barrier. Biochemistry 33(21):6707–6715

    Article  CAS  PubMed  Google Scholar 

  • Kittayanond D, Dowton SM et al (1992) Development of a model of the lipid constituent phase of the stratum-corneum. 2. Preparation of artificial membranes from synthetic lipids and assessment of permeability properties using in vitro diffusion experiments. J Soc Cosmet Chem 43(5):237–249

    CAS  Google Scholar 

  • Kolli CS, Banga AK (2008) Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 25(1):104–113

    Article  CAS  PubMed  Google Scholar 

  • Kreilgaard M (2002) Assessment of cutaneous drug delivery using microdialysis. Adv Drug Deliv Rev 54(Suppl 1):S99–S121

    Article  CAS  PubMed  Google Scholar 

  • Kuempel D, Swartzendruber DC et al (1998) In vitro reconstitution of stratum corneum lipid lamellae. Biochim Biophys Acta Biomembranes 1372(1):135–140

    Article  CAS  Google Scholar 

  • Kumar MG, Lin SS (2008) Transdermal iontophoresis: impact on skin integrity as evaluated by various methods. Crit Rev Ther Drug Carrier Syst 25(4):381–401

    Article  CAS  PubMed  Google Scholar 

  • Lackermeier AH, McAdams ET et al (1999) In vivo AC impedance spectroscopy of human skin: theory and problems in monitoring of passive percutaneous drug delivery. Ann N Y Acad Sci 873(Electrical Bioimpedance Methods: Applications to Medicine and Biotechnology):197–213

    Google Scholar 

  • Lademann J, Richter H et al (2006) Hair follicles – a long-term reservoir for drug delivery. Skin Pharmacol Physiol 19(4):232–236

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayanaiah N (1965) Transport phenomena in artificial membranes. Chem Rev 65(5):491

    Article  CAS  PubMed  Google Scholar 

  • Langer R (1990) Novel drug delivery systems. Chem Br 26(3):232

    CAS  Google Scholar 

  • Langguth P, Spahn H et al (1986) Variations of in vitro nitroglycerine permeation through human-epidermis. Pharm Res 3(1):61–63

    Article  CAS  PubMed  Google Scholar 

  • Larsen CG, Larsen FG et al (1988) Preparation of human epidermal tissue for functional immune studies. Acta Derm Venereol 68(6):474–479

    CAS  PubMed  Google Scholar 

  • Lashmar UT, Hadgraft J et al (1989) Topical application of penetration enhancers to the skin of nude-mice – a histopathological study. J Pharm Pharmacol 41(2):118–121

    Article  CAS  PubMed  Google Scholar 

  • Lawler JC, Davis MJ et al (1960) Electrical characteristics of the skin – the impedance of the surface sheath and deep tissues. J Invest Dermatol 34(5):301–308

    Article  CAS  PubMed  Google Scholar 

  • Le VH, Lippold BC (1995) Influence of physicochemical properties of homologous esters of nicotinic-acid on skin permeability and maximum flux. Int J Pharm 124(2):285–292

    Article  CAS  Google Scholar 

  • Lee D-Y, Ahn H-T et al (2000) A new skin equivalent model: dermal substrate that combines de-epidermized dermis with fibroblast-populated collagen matrix. J Dermatol Sci 23(2):132–137

    Article  CAS  PubMed  Google Scholar 

  • Lee RS, Watkinson A et al (2001) Barrier function of the axillary stratum corneum. J Invest Dermatol 117(3):810–810

    Google Scholar 

  • Lee J-N, Jee S-H et al (2008) The effects of depilatory agents as penetration enhancers on human stratum corneum structures. J Invest Dermatol 128:2240–2247

    Article  CAS  PubMed  Google Scholar 

  • Leopold CS, Lippold BC (1992) A new application chamber for skin penetration studies in vivo with liquid preparations. Pharm Res 9(9):1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Levin J, Maibach H (2005) The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release 103(2):291–299

    Article  CAS  PubMed  Google Scholar 

  • Li LN, Hoffman RM (1997) Topical liposome delivery of molecules to hair follicles in mice. J Dermatol Sci 14(2):101–108

    Article  PubMed  Google Scholar 

  • Li LN, Lishko V et al (1993) Liposome targeting of high-molecular-weight DNA to the hair-follicles of histocultured skin – a model for gene-therapy of the hair-growth processes. In Vitro Cell Dev Biol Anim 29A(4):258–260

    Article  CAS  PubMed  Google Scholar 

  • Li SK, Suh W et al (1998) Lag time data for characterizing the pore pathway of intact and chemically pretreated human epidermal membrane. Int J Pharm 170(1):93–108

    Article  CAS  Google Scholar 

  • Li SK, Ghanem AH et al (1999) Pore induction in human epidermal membrane during low to moderate voltage iontophoresis: a study using AC iontophoresis. J Pharm Sci 88(4):419–427

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Tsuji H et al (2006) Characterization of the transdermal transport of flurbiprofen and indomethacin. J Control Release 110(3):542–556

    Article  CAS  PubMed  Google Scholar 

  • Lieb LM, Ramachandran C et al (1992) Topical delivery enhancement with multilamellar liposomes into pilosebaceous units. 1. In vitro evaluation using fluorescent techniques with the hamster ear model. J Invest Dermatol 99(1):108–113

    Article  CAS  PubMed  Google Scholar 

  • Lieckfeldt R, Villalain J et al (1993) Diffusivity and structural polymorphism in some model stratum-corneum lipid systems. Biochim Biophys Acta 1150(2):182–188

    Article  CAS  PubMed  Google Scholar 

  • Loden M (1992) The increase in skin hydration after application of emollients with different amounts of lipids. Acta Derm Venereol 72(5):327–330

    CAS  PubMed  Google Scholar 

  • Loftsson T (1982) Experimental and theoretical model for studying simultaneous transport and metabolism of drugs in excised skin. Arch Pharm Chem Sci Ed 10:17

    Google Scholar 

  • Long SA, Wertz PW et al (1985) HUman stratum corenum polar lipids and desquamation. Arch Dermatol Res 277:284–287

    Article  CAS  PubMed  Google Scholar 

  • Lotte C, Patouillet C et al (2002) Permeation and skin absorption: reproducibility of various industrial reconstructed human skin models. Skin Pharmacol Appl Skin Physiol 15:18–30

    Article  CAS  PubMed  Google Scholar 

  • Luu-The V, Ferraris C et al (2007) Steroid metabolism and profile of steroidogenic gene expression in Episkin (TM): high similarity with human epidermis. J Steroid Biochem Mol Biol 107(1–2):30–36

    Article  CAS  PubMed  Google Scholar 

  • Luzardo-Alvarez A, Delgado-Charro MB et al (2003) In vivo iontophoretic administration of ropinirole hydrochloride. J Pharm Sci 92(12):2441–2448

    Article  CAS  PubMed  Google Scholar 

  • Mackee GM, Sulzberger MB et al (1945) Histologic studies on percutaneous penetration with special reference to the effect of vehicles. J Invest Dermatol 6(1):43–61

    Article  Google Scholar 

  • Madison KC, Swartzendruber DC et al (1987) Presence of intercellular lipid lamellae in the upper layers of stratum corneum. J Invest Dermatol 88:714–718

    Article  CAS  PubMed  Google Scholar 

  • Mak VHW, Cumpstone MB et al (1991) Barrier function of human keratinocyte cultures grown at the air-liquid interface. J Invest Dermatol 96(3):323–327

    Article  CAS  PubMed  Google Scholar 

  • Malkinson FD, Ferguson EH (1955) Percutaneous absorption of hydrocortisone-4-c-14 in 2 human subjects. J Invest Dermatol 25(5):281–283

    Article  CAS  PubMed  Google Scholar 

  • Mansbridge J (2002) Tissue-engineered skin substitutes. Expert Opin Biol Ther 2(1):25–34

    Article  PubMed  Google Scholar 

  • Marty P, Faure C et al (1997) Assessment of human skins obtained by in vitro culture as membrane models for cutaneous permeation tests. In: Brain KR, James VJ, Walters KA (eds) Perspectives in percutaneous penetration. STS Publishing, Cardiff, p 64

    Google Scholar 

  • Masson M, Sigfusson SD et al (2002) Fish skin as a model membrane to study transmembrane drug delivery with cyclodextrins. J Incl Phenom Macrocycl Chem 44(1–4):177–182

    Article  CAS  Google Scholar 

  • Mathy FX, Ntivunwa D et al (2005) Fluconazole distribution in rat dermis following intravenous and topical application: a microdialysis study. J Pharm Sci 94(4):770–780

    Article  CAS  PubMed  Google Scholar 

  • Matoltsy AG (1986) The skin of mammals: structure and function of the mammalian epidermis. In: BereiterHahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. 2. Vertebrates. Berlin, Springer, pp 255277

    Google Scholar 

  • Matoltsy AG, Downes AM et al (1968) Studies of the epidermal water barrier. Part II. Investigation of the chemical nature of the water barrier. J Invest Dermatol 50:19–26

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Imaoka T et al (1993) Development of a model membrane system using stratum-corneum lipids for estimation of drug skin permeability. Chem Pharm Bull 41(3):575–579

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Allen MG et al (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313

    Article  CAS  PubMed  Google Scholar 

  • McCullough J, Ramirez J et al (2006) In vitro percutaneous absorption of a novel topical benzoyl peroxide formulation in human cadaver skin layers. J Am Acad Dermatol 54(3):AB29

    Google Scholar 

  • McMullen TPW, McElhaney RN (1995) New aspects of the interactions of cholesterol with dipalmitoyl phosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta 1234:90–98

    Article  PubMed  Google Scholar 

  • Megrab NA, Williams AC et al (1995) Estradiol permeation across human skin, silastic and snake skin membranes – the effects of ethanol-water cosolvent systems. Int J Pharm 116(1):101–112

    Article  CAS  Google Scholar 

  • Mendelsohn R, Flach CR et al (2006) Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta Biomembranes 1758(7):923–933

    Article  CAS  Google Scholar 

  • Menon GK, Elias PM (1997) Morphologic basis for a pore-pathway in mammalian stratum corneum. Skin Pharmacol 10:235–246

    Article  CAS  PubMed  Google Scholar 

  • Menon GK, Lee SH et al (1998) Ultrastructural effects of some solvents and vehicles on the stratum corneum and other skin components: evidence for an “extended mosaic partitioning” model of the skin barrier. In: Roberts MS, Walters KA (eds) Dermal absorption and toxicity assessment. Marcel Dekker, New York, pp 727–751

    Google Scholar 

  • Michaels AS, Chandrasekaran SK et al (1975) Drug permeation through human skin. Theory and in vitro experimental measurements. AIChE J 21(5):985–996

    Article  CAS  Google Scholar 

  • Michel M, L'Heureux N et al (1999) Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 35(6):318–326

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Pisani E (1999) The cost of unsafe injections. Bull World Health Organ 77(10):808–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitragotri S, Kost J (2004) Low-frequency sonophoresis – a review. Adv Drug Deliv Rev 56(5):589–601

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D et al (1995) Ultrasound-mediated transdermal protein delivery. Science 269(5225):850–853

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D et al (1996) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13(3):411–420

    Article  CAS  PubMed  Google Scholar 

  • Miyajima K, Tanikawa S et al (1994) Effects of absorption enhancers and lipid-composition on drug permeability through the model membrane using stratum-corneum lipids. Chem Pharm Bull 42(6):1345–1347

    Article  CAS  Google Scholar 

  • Moghimi HR, Williams AC et al (1996) A lamellar matrix model for stratum corneum intercellular lipids. 1. Characterisation and comparison with stratum corneum intercellular structure. Int J Pharm 131(2):103–115

    Article  CAS  Google Scholar 

  • MonteiroRiviere NA, Inman AO et al (1997) Comparison of an in vitro skin model to normal human skin for dermatological research. Microsc Res Tech 37(3):172–179

    Article  CAS  Google Scholar 

  • Moody RP, Nadeau B et al (1995) In-vivo and in-vitro dermal absorption of benzo[a]pyrene in rat, guinea-pig, human and tissue-cultured skin. J Dermatol Sci 9(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Moore DJ, Rerek ME (1998) Biophysics of skin barrier lipid organization. J Invest Dermatol 110(4):674

    Google Scholar 

  • Morell JLP, Claramonte MDC et al (1996) Validation of a release diffusion cell for topical dosage forms. Int J Pharm 137(1):49–55

    Article  Google Scholar 

  • Morikawa N, Kitagawa T et al (2007) Assessment of the in vitro skin irritation of chemicals using the Vitrolife-Skin™ human skin model. AATEX 14:417–423

    Google Scholar 

  • Moser K, Kriwet K et al (2001) Permeation enhancement of a highly lipophilic drug using supersaturated systems. J Pharm Sci 90(5):607–616

    Article  CAS  PubMed  Google Scholar 

  • Muhammad F, Brooks JD et al (2004) Comparative mixture effects of JP-8(100) additives on the dermal absorption and disposition of jet fuel hydrocarbons in different membrane model systems. Toxicol Lett 150(3):351–365

    Article  CAS  PubMed  Google Scholar 

  • Nabila Sekkat RHG (2001) Biological models to study skin permeation. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research. Verlag Helvetica Chimica Acta, Postfach, CH-8042 Zürich, Switzerland pp 155172

    Google Scholar 

  • Nacht S, Yeung D et al (1981) Benzoyl peroxide – percutaneous penetration and metabolic disposition. J Am Acad Dermatol 4(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Naik A, Kalia YN et al (2001) Characterization of molecular transport across human stratum corneum in vivo. J Toxicol Cutan Ocular Toxicol 20(2–3):279–301

    Article  Google Scholar 

  • Nakamura M, Rikimaru T et al (1990) Full-thickness human skin explants for testing the toxicity of topically applied chemicals. J Invest Dermatol 95(3):325–332

    Article  CAS  PubMed  Google Scholar 

  • Netzaff F, Lehr CM et al (2005) The human epidermis models EpiSkin (R), SkinEthic (R) and EpiDerm (R): an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 60(2):167–178

    Article  CAS  Google Scholar 

  • Netzlaff F, Kostka KH et al (2006a) TEWL measurements as a routine method for evaluating the integrity of epidermis sheets in static Franz type diffusion cells in vitro. Limitations shown by transport data testing. Eur J Pharm Biopharm 63(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Netzlaff F, Schaefer UF et al (2006b) Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. ATLA Altern Lab Anim 34(5):499–513

    CAS  PubMed  Google Scholar 

  • Netzlaff F, Kaca M et al (2007) Permeability of the reconstructed human epidermis model Episkin (R) in comparison to various human skin preparations. Eur J Pharm Biopharm 66(1):127–134

    Article  CAS  PubMed  Google Scholar 

  • Nir Y, Paz A et al (2003) Fear of injections in young adults: prevalence and associations. Am J Trop Med Hyg 68(3):341–344

    PubMed  Google Scholar 

  • Norlen L (2001) Skin barrier formation: the membrane folding model. J Invest Dermatol 117(4):823–829

    Article  CAS  PubMed  Google Scholar 

  • Norlén L (2001) Skin barrier structure and function: the single phase model. J Invest Dermatol 117:830–836

    Article  PubMed  Google Scholar 

  • Norlén L, Nicander I et al (1998) A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch Dermatol Res 290:508–516

    Article  PubMed  Google Scholar 

  • Norlen L, Nicander I et al (1999) Inter- and intra-individual differences in human stratum corneum lipid content related to physical parameters of skin barrier function in vivo. J Invest Dermatol 112(1):72–77

    Article  CAS  PubMed  Google Scholar 

  • Odland GF (1983) Structure of the skin. In: Goldsmith EL (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 363

    Google Scholar 

  • Oertel RP (1977) Protein conformational-changes induced in human stratum-corneum by organic sulfoxides – IR spectroscopic investigation. Biopolymers 16(10):2329–2345

    Article  CAS  PubMed  Google Scholar 

  • Ogiso T, Hata T et al (2001) Transdermal absorption of bupranolol in rabbit skin in vitro and in vivo. Biol Pharm Bull 24(5):588–591

    Article  CAS  PubMed  Google Scholar 

  • Ogura M, Pahwal S et al (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60(10):1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Ohman H, Vahlquist A (1994) In-vivo studies concerning a ph gradient in human stratum-corneum and upper epidermis. Acta Derm Venereol 74(5):375–379

    CAS  PubMed  Google Scholar 

  • Okamoto H, Hashida M et al (1988) Structure activity relationship of 1-alkylazacycloalkanone or 1-alkenylazacycloalkanone derivatives as percutaneous penetration enhancers. J Pharm Sci 77(5):418–424

    Article  CAS  PubMed  Google Scholar 

  • Olivella MS, Debattista NB et al (2006) Salicylic acid permeation: a comparative study with different vehicles and membranes. Biocell 30(2):321–324

    CAS  PubMed  Google Scholar 

  • Osborne DW (1986) Computational method for predicting skin permeation of chemicals. Pharmaceutical Manufacturing 41–48

    Google Scholar 

  • Ottaviani G, Martel S et al (2006) Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem 49(13):3948–3954

    Article  CAS  PubMed  Google Scholar 

  • Pabla D, Zia H (2007) A comparative permeation/release study of different testosterone gel formulations. Drug Deliv 15(6):389–396

    Article  CAS  Google Scholar 

  • PageonH, Asselineau D (2005) An in vitro approach to the chronological aging of skin by glycation of the collagen – the biological effect of glycation on the reconstructed skin model. In: Maillard reaction: chemistry at the interface of nutrition, aging, and disease, vol 1043. New York, New York Academy Sciences, pp 529532

    Google Scholar 

  • Paliwal S, Menon GK et al (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126(5):1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Panchagnula R, Stemmer K et al (1997) Animal models for transdermal drug delivery. Methods Find Exp Clin Pharmacol 19(5):335–341

    CAS  PubMed  Google Scholar 

  • Panchagnula R, Pillai O et al (2000) Transdermal iontophoresis revisited. Curr Opin Chem Biol 4(4):468–473

    Article  CAS  PubMed  Google Scholar 

  • Pellett MA, Roberts MS et al (1997) Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int J Pharm 151(1):91–98

    Article  CAS  Google Scholar 

  • Pershing LK, Lambert LD et al (1990) Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharm Res 7(2):170–175

    Article  CAS  PubMed  Google Scholar 

  • Pillai O, Nair V et al (2001) Noninvasive transdermal delivery of peptides and proteins. Drugs Future 26(8):779–791

    Article  CAS  Google Scholar 

  • Pinnagoda J, Tupker RA et al (1989) The intra-individual and inter-individual variability and reliability of trans-epidermal water-loss measurements. Contact Dermatitis 21(4):255–259

    Article  CAS  PubMed  Google Scholar 

  • Pinnagoda J, Tupker RA et al (1990) Guidelines for transepidermal water loss (TEWL) measurement – a report from the standardization group of the European Society of contact dermatitis. Contact Dermatitis 22(3):164–178

    Article  CAS  PubMed  Google Scholar 

  • Pirot F, Kalia YN et al (1997) Characterization of the permeability barrier of human skin in vivo. Proc Natl Acad Sci U S A 94(4):1562–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pliquett U (1999) Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv Drug Deliv Rev 35(1):41–60

    Article  CAS  PubMed  Google Scholar 

  • Poelman MC, Piot B et al (1989) Assessment of topical non-steroidal anti-inflammatory drugs. J Pharm Pharmacol 41(10):720–722

    Article  CAS  PubMed  Google Scholar 

  • Ponec M, Kempenaar J (1995) Use of human skin recombinants as an in-vitro model for testing the irritation potential of cutaneous irritants. Skin Pharmacol 8(1–2):49–59

    CAS  PubMed  Google Scholar 

  • Ponec M, Boelsma E et al (2000) Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 203(1–2):211–225

    Article  CAS  PubMed  Google Scholar 

  • Ponec M, Boelsma E et al (2002) Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 15:4–17

    Article  CAS  PubMed  Google Scholar 

  • Potts RO, Francoeur ML (1993) Infrared spectroscopy of stratum corneum lipids. In: Walters KA, Hadgraft J (eds) Pharmaceutical skin penetration enhancement. Marcel Dekker, New York

    Google Scholar 

  • Poumay Y, Dupont F et al (2004) A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res 296(5):203–211

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR (1997) Transdermal delivery of macromolecules: recent advances by modification of skin’s barrier properties. In: Zahra Shahrokh (ed.) Therapeutic protein and peptide formulation and delivery, vol 675, American Chemical Society symposium series pp 124153

    Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5):581–587

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Mitragotri S et al (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Pudney PDA, Melot M et al (2007) An in vivo confocal Raman study of the delivery of trans-retinol to the skin. Appl Spectrosc 61(8):804–811

    Article  CAS  PubMed  Google Scholar 

  • Puglia C, Blasi P et al (2008) Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 357(1–2):295–304

    Article  CAS  PubMed  Google Scholar 

  • Qiang M, Engström S et al (1993) Fatty acids are required for epidermal permeability barrier function. J Clin Invest 92:791–798

    Article  Google Scholar 

  • Quisno RA, Doyle RL (1983) A new occlusive patch test system with a plastic chamber. J Soc Cosmet Chem 34(1):13–19

    CAS  Google Scholar 

  • Rao VU, Misra AN (1994) Effect of penetration enhancers on transdermal absorption of insulin across human cadaver skin. Drug Dev Ind Pharm 20(16):2585–2591

    Article  Google Scholar 

  • Regnier M, Patwardhan A et al (1998) Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput 36(6):821–824

    Article  CAS  PubMed  Google Scholar 

  • Rehder J, Souto LR et al (2004) Model of human epidermis reconstructed in vitro with keratinocytes and melanocytes on dead de-epidermized human dermis. Sao Paulo Med J 122:22–25

    Article  PubMed  Google Scholar 

  • Remane Y, Leopold CS et al (2006) Percutaneous penetration of methyl nicotinate from ointments using the laser Doppler technique: bioequivalence and enhancer effects. J Pharmacokinet Pharmacodyn 33(6):719–735

    Article  CAS  PubMed  Google Scholar 

  • Rice RH, Green H (1977) The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross linked proteins. Cell 11:417–422

    Article  CAS  PubMed  Google Scholar 

  • Rigg PC, Barry BW (1990) Shed snake skin and hairless mouse skin as model membranes for human skin during permeation studies. J Invest Dermatol 94(2):235–240

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Sage B et al (1991) Effects of vasoactive drugs on transdermal lidocaine iontophoresis. J Pharm Sci 80(7):615–620

    Article  CAS  PubMed  Google Scholar 

  • Robert Peter Chilcott RF (2000) Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res Technol 6(2):64–69

    Article  PubMed  Google Scholar 

  • Rocha JCB, Pedrochi F et al (2007) Ex vivo evaluation of the percutaneous penetration of proanthocyanidin extracts from Guazuma ulmifolia using photoacoustic spectroscopy. Anal Chim Acta 587(1):132–136

    Article  CAS  PubMed  Google Scholar 

  • Rochefort A, Druot P et al (1986) A new technique for the evaluation of cosmetics effect on mechanical-properties of stratum-corneum and epidermis in vitro. Int J Cosmet Sci 8(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, O’Connell C et al (2004) Measurement of DNA biomarkers for the safety of tissue-engineered medical products, using artificial skin as a model. Tissue Eng 10(9–10):1332–1345

    Article  CAS  PubMed  Google Scholar 

  • Roguet R, Cohen C et al (1998) An interlaboratory study of the reproducibility and relevance of Episkin, reconstructed human epidermis, in the assessment of cosmetics irritancy. Toxicol In Vitro 12(3):295–304

    Article  CAS  PubMed  Google Scholar 

  • Rohatagi S, Barrett JS et al (1997) Selegiline percutaneous absorption in various species and metabolism by human skin. Pharm Res 14(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Rossi RCP, de Paiva RF et al (2008) Photoacoustic study of percutaneous absorption of Carbopol and transdermic gels for topic use in skin. Eur Phys J (Special Topics) 153:479–482

    Article  Google Scholar 

  • Rougier A, Dupuis D et al (1983) Invivo correlation between stratum-corneum reservoir function and percutaneous-absorption. J Invest Dermatol 81(3):275–278

    Article  CAS  PubMed  Google Scholar 

  • Rougier A, Lotte C et al (1989) In vivo relationship between percutaneous absorption and transepidermal water loss. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption. Marcel Dekker, New York, pp 175–190

    Google Scholar 

  • Roy SD, Degroot JS (1994) Percutaneous-absorption of nafarelin acetate, an LHRH analog, through human cadaver skin and monkey skin. Int J Pharm 110(2):137–145

    Article  CAS  Google Scholar 

  • Roy SD, Hou SYE et al (1994) Transdermal delivery of narcotic analgesics – comparative metabolism and permeability of human cadaver skin and hairless mouse skin. J Pharm Sci 83(12):1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Rutherford T, Black JG (1969) Use of autoradiography to study localization of germicides in skin. Br J Dermatol S81:75

    Article  Google Scholar 

  • Sandby-Moller J, Poulsen T et al (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 83(6):410–413

    Article  PubMed  Google Scholar 

  • Sato K, Sugibayashi K et al (1991) Species-differences in percutaneous-absorption of nicorandil. J Pharm Sci 80(2):104–107

    Article  CAS  PubMed  Google Scholar 

  • Schafer-Korting M, Bock U et al (2006) Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study. ATLA Altern Lab Anim 34(3):283–294

    PubMed  Google Scholar 

  • Schafer-Korting M, Bock U et al (2008) The use of reconstructed human epidermis for skin absorption testing: results of the validation study. ATLA Altern Lab Anim 36(2):161–187

    PubMed  Google Scholar 

  • Schalla W, Schaefer H (1982) Mechanisms of penetration of drugs into the skill. In: Brandau R, Lippold BH (eds) Dermal and transdennal absorption. Wissenschaftlichen Verlag, Stuttgart, pp 41–70

    Google Scholar 

  • Scheuplein RJ (1965) Mechanism of percutaneous absorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol 45:334–346

    Article  CAS  PubMed  Google Scholar 

  • Scheuplein RJ (1966) Analysis of permeability data for the case of parallel diffusion pathways. Biophys J 6(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuplein RJ (1967) Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Scheuplein RJ (1972) Properties of the skin as a membrane. Adv Biol Skin 12:125–152

    CAS  PubMed  Google Scholar 

  • Scheuplein RJ (1978) Permeability of the skin: a review of major concepts. Curr Prob Dermatol 7:172–186

    Article  CAS  Google Scholar 

  • Scheuplein RJ, Bronaugh RL (1983) Percutaneous absorption. In: Goldsmith LA, ed. Biochemistry and Physiology of the Skin, Vol. 2. New York: Oxford University Press 1255–1295

    Google Scholar 

  • Schmook FP, Meingassner JG et al (2001) Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 215(1–2):51–56

    Article  CAS  PubMed  Google Scholar 

  • Schramm-Baxter J, Katrencik J et al (2004) Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech 37(8):1181–1188

    Article  PubMed  Google Scholar 

  • Scott RE, Leahy DE et al (1986) In vitro percutaneous model for quantitative structure-absorption studies. J Pharm Pharmacol 38(Suppl):66

    Article  Google Scholar 

  • Scott RC, Corrigan MA et al (1991) The influence of skin structure on permeability: an intersite and interspecies comparison with hydrophilic penetrants. J Invest Dermatol 96(6):921–925

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani P, Nicoli S et al (2005) Effect of lactic acid and iontophoresis on drug permeation across rabbit ear skin. Int J Pharm 292(1–2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Sekkat N, Kalia YN et al (2002) Biophysical study of porcine ear skin in vitro and its comparison to human skin in vivo. J Pharm Sci 91(11):2376–2381

    Article  CAS  PubMed  Google Scholar 

  • Shah HS, Tojo K et al (1992) Enhancement of in vitro skin permeation of verapamil. Drug Dev Ind Pharm 18(13):1461–1476

    Article  CAS  Google Scholar 

  • Shah VP, Flynn GL et al (1998) Bioequivalence of topical dermatological dosage forms – methods of evaluation of bioequivalence. Pharm Res 15(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Shahabeddin L, Berthod F et al (1990) Characterization of skin reconstructed on a chitosancross-linked collagen-glycosaminoglycan matrix. Skin Pharmacol 3:107–114

    Article  CAS  PubMed  Google Scholar 

  • Shakespeare P (2001) Burn wound healing and skin substitutes. Burns 27(5):517–522

    Article  CAS  PubMed  Google Scholar 

  • Shelley WB, Melton FM (1949) Factors accelerating the penetration of histamine through normal intact human skin. J Invest Dermatol 13(2):61–71

    Article  CAS  Google Scholar 

  • Sheth NV, McKeough MB et al (1987) Measurement of the stratum-corneum drug reservoir to predict the therapeutic efficacy of topical iododeoxyuridine for herpes-simplex virus-infection. J Invest Dermatol 89(6):598–602

    Article  CAS  PubMed  Google Scholar 

  • Shibayama H, Hisama M et al (2008) Permeation and metabolism of a novel ascorbic acid derivative, disodium isostearyl 2-O-L-ascorbyl phosphate, in human living skin equivalent models. Skin Pharmacol Physiol 21(4):235–243

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Green H (1984) Participation of membrane associated proteins in the formation of the cross linked envelope of the keratinocyte. Cell 36:827–834

    Article  CAS  PubMed  Google Scholar 

  • Simon GA, Maibach HI (2000) The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations – an overview. Skin Pharmacol Appl Skin Physiol 13(5):229–234

    Article  CAS  PubMed  Google Scholar 

  • Sinha VR, Kaur MP (2000) Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 26(11):1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Sivamani RK, Liepmann D et al (2007) Microneedles and transdermal applications. Expert Opin Drug Deliv 4(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Skerrow D, Hunter I (1978) Protein modification during the keratinization of normal and psoriatic epidermis. Biochim Biophys Acta 537:474–484

    Article  CAS  PubMed  Google Scholar 

  • Slivka SR, Landeen LK et al (1993) Characterization, barrier function, and drug-metabolism of an in vitro skin model. J Invest Dermatol 100(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Smith ICH (1993) Frog skin. ATLA Altern Lab Anim 21(3):392

    Google Scholar 

  • Sobral CS, Gragnani A et al (2007) Inhibition of proliferation of Pseudomonas aeruginosa by KGF in an experimental burn model using human cultured keratinocytes. Burns 33(5):613–620

    Article  CAS  PubMed  Google Scholar 

  • Sonavane G, Tomoda K et al (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces 65(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Soni J, Baird AW et al (2006) Rat, ovine and bovine Peyer’s patches mounted in horizontal diffusion chambers display sampling function. J Control Release 115(1):68–77

    Article  CAS  PubMed  Google Scholar 

  • Southwell D, Barry BW (1983) Penetration enhancers for human-skin – mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, normal-alcohols, and caffeine. J Invest Dermatol 80(6):507–514

    Article  CAS  PubMed  Google Scholar 

  • Southwell D, Barry BW et al (1984) Variations in permeability of human-skin within and between specimens. Int J Pharm 18(3):299–309

    Article  CAS  Google Scholar 

  • Squier CA (1973) The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastr Res 43:160–177

    Article  CAS  Google Scholar 

  • Srinivasan V, Higuchi WI (1990) A model for iontophoresis incorporating the effect of convective solvent flow. Int J Pharm 60(2):133–138

    Article  CAS  Google Scholar 

  • Stamatas GN, de Sterke J et al (2008) Lipid uptake and skin occlusion following topical application of oils on adult and infant skin. J Dermatol Sci 50(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Cantieri JS (1983) Epidermal keratins. In: Goldsmith AL (ed) Biochemistry and physiology of the skin, vol I. Oxford University Press, New York, pp 135–169

    Google Scholar 

  • Stinchcomb AL, Pirot F et al (1999) Chemical uptake into human stratum corneum in vivo from volatile and non-volatile solvents. Pharm Res 16(8):1288–1293

    Article  CAS  PubMed  Google Scholar 

  • Suh H, Jun HW (1996) Effectiveness and mode of action of isopropyl myristate as a permeation enhancer for naproxen through shed snake skin. J Pharm Pharmacol 48(8):812–816

    Article  CAS  PubMed  Google Scholar 

  • Suppasrivasuseth J, Bellantone RA et al (2006) Permeability and retention studies of (−)Epicatechin gel formulations in human cadaver skin. Drug Dev Ind Pharm 32(9):1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Surber C, Schwarb FP et al (1999) Tape-stripping technique. In: Bronough H, Maibach H (eds) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 395–409

    Google Scholar 

  • Swartzendruber DC, Wertz PW et al (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88:709–713

    Article  CAS  PubMed  Google Scholar 

  • Swartzendruber DC, Wertz PW et al (1989) Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J Invest Dermatol 92:251–257

    Article  CAS  PubMed  Google Scholar 

  • Sweeney TM, Downing DT (1970) The role of lipids in the epidermal barrier to diffusion. J Invest Dermatol 55:135–140

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Sinoda K et al (1996) Effects of cholesterol on the lamellar and the inverted hexagonal phases of dielaidoylphosphatidylethanolamine. Biochim Biophys Acta 1289:209–216

    Article  PubMed  Google Scholar 

  • Tanaka M, Fukuda H et al (1978) Permeation of drug through a model membrane consisting of millipore filter with oil. Chem Pharm Bull 26(1):9–13

    Article  CAS  Google Scholar 

  • Tang H, Mitragotri S et al (2001) Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. J Pharm Sci 90(5):545–568

    Article  CAS  PubMed  Google Scholar 

  • Tas C, Ozkan Y et al (2007) In vitro and ex vivo permeation studies of etodolac from hydrophilic gels and effect of Terpenes as enhancers. Drug Deliv 14(7):453–459

    Article  CAS  PubMed  Google Scholar 

  • Tenjarla SN, Kasina R et al (1999) Synthesis and evaluation of N-acetylprolinate esters – novel skin penetration enhancers. Int J Pharm 192(2):147–158

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A et al (2001) Frequency dependence of sonophoresis. Pharm Res 18(12):1694–1700

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A et al (2003) Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. J Pharm Sci 92(2):381–393

    Article  CAS  PubMed  Google Scholar 

  • Thomas BJ, Finnin BC (2004) The transdermal revolution. Drug Discov Today 9(16):697–703

    Article  CAS  PubMed  Google Scholar 

  • Tiemessen H, Bodde HE et al (1989) A human stratum-corneum silicone membrane sandwich to simulate drug transport under occlusion. Int J Pharm 53(2):119–127

    Article  CAS  Google Scholar 

  • Tipre DN, Vavia PR (2003) Acrylate-based transdermal therapeutic system of nitrendipine. Drug Dev Ind Pharm 29(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Tojo K, Lee ARC (1989) A method for predicting steady-state rate of skin penetration in vivo. J Invest Dermatol 92(1):105–108

    Article  CAS  PubMed  Google Scholar 

  • Tojo K, Masi JA et al (1985a) Hydrodynamic characteristics of an in vitro drug permeation cell. Ind Eng Chem Fund 24(3):368–373

    Article  CAS  Google Scholar 

  • Tojo K, Sun Y et al (1985b) Characterization of a membrane permeation system for controlled drug delivery studies. AIChE J 31(5):741–746

    Article  CAS  Google Scholar 

  • Tokudome Y, Sugibayashi K (2004) Mechanism of the synergic effects of calcium chloride and electroporation on the in vitro enhanced skin permeation of drugs. J Control Release 95(2):267–274

    Article  CAS  PubMed  Google Scholar 

  • Tregear RT (1961) Relative penetrability of hair follicles and epidermis. J Physiol (London) 156(2):307

    Article  CAS  Google Scholar 

  • Tregear RT (1966) Physical function of skin. Academic, New York

    Google Scholar 

  • Tsai JC, Weiner ND et al (1991) Properties of adhesive tapes used for stratum-corneum stripping. Int J Pharm 72(3):227–231

    Article  CAS  Google Scholar 

  • Tsai JC, Sheu HM et al (2001) Effect of barrier disruption by acetone treatment on the permeability of compounds with various lipophilicities: implications for the permeability of compromised skin. J Pharm Sci 90(9):1242–1254

    Article  CAS  PubMed  Google Scholar 

  • Tsai JC, Lin CY et al (2003) Noninvasive characterization of regional variation in drug transport into human stratum corneum in vivo. Pharm Res 20(4):632–638

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta H (1977) Percutaneous absorption of organic solvents. 2. A method for measuring the penetration rate of chlorinated solvents through excised rat skin. Ind Health 15:131–139

    Article  CAS  Google Scholar 

  • Turakka L, Piepponen T et al (1984) Release of hydrocortisone and hydrocortisone acetate from topical vehicles in vitro. Labo-Pharma Probl Tech 344:540–544

    CAS  Google Scholar 

  • Uchino T, Tokunaga H et al (2002) Effect of squalene monohydroperoxide on cytotoxicity and cytokine release in a three-dimensional human skin model and human epidermal keratinocytes. Biol Pharm Bull 25(5):605–610

    Article  CAS  PubMed  Google Scholar 

  • Umemura K, Ikeda Y et al (2008) Cutaneous pharmacokinetics of topically applied maxacalcitol ointment and lotion. Int J Clin Pharmacol Ther 46(6):289–294

    Article  CAS  PubMed  Google Scholar 

  • Valia KH, Chien YW et al (1984) Long-term skin permeation kinetics of estradiol. 1. Effect of drug solubilizer olyethylene-glycol 400. Drug Dev Ind Pharm 10(7):951–981

    Article  CAS  Google Scholar 

  • Vanbrunt J (1989) Novel drug delivery systems. Biotechnology 7(2):127–130

    Article  CAS  Google Scholar 

  • Vankoote WJ, Mali JWH (1966) Significance of sweat-ducts in permeation experiments on isolated cadaverous human skin. Dermatologica 132(2):141

    Article  Google Scholar 

  • Vankooten WJ, Mali JWH (1966) Significance of sweat-ducts in permeation experiments on isolated cadaverous human skin. Dermatologica 132(2):141

    Article  CAS  Google Scholar 

  • Vicanova J, Mommaas AM et al (1996a) Impaired desquamation in the in vitro reconstructed human epidermis. Cell Tissue Res 286(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Vicanova J, Mommaas AM et al (1996b) Transformation of desmosomes is impaired in the in vitro reconstructed human epidermis. J Invest Dermatol 107(4):44

    Google Scholar 

  • Vickers CFH (1963) Existence of reservoir in stratum corneum – experimental proof. Arch Dermatol 88(1):20

    Article  CAS  PubMed  Google Scholar 

  • Viegas TX, Kibbe AH et al (1986) An in vitro method of evaluating tolnaftate release from topical powder. Pharm Res 3(2):88–92

    Article  CAS  PubMed  Google Scholar 

  • Wahlberg JE (1968) Transepidermal or transfollicular absorption – in vivo and in vitro studies in hairy and non-hairy guinea pig skin with sodium (22 Na) and mercuric (203 Hg) chlorides. Acta Derm Venereol 48(4):336

    CAS  PubMed  Google Scholar 

  • Wallace SM, Barnett G (1978) Pharmacokinetic analysis of percutaneous absorption – evidence of parallel penetration pathways for methotrexate. J Pharmacokinet Biopharm 6(4):315–325

    Article  CAS  PubMed  Google Scholar 

  • Walzer C, Benathan M et al (1989) Thermolysin treatment – a new method for dermo-epidermal separation. J Invest Dermatol 92(1):78–81

    Article  CAS  PubMed  Google Scholar 

  • Washitake M, Takashima Y et al (1980) Studies on drug release from ointment. 1. Drug permeation through eggshell membranes. Chem Pharm Bull 28(10):2855–2861

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Hongo S et al (1989) Evaluation of excised loach skin for studies on transdermal permeation of drugs in vitro. Yakugaku Zasshi (Journal of the Pharmaceutical Society of Japan) 109(9):656–661

    Article  CAS  Google Scholar 

  • Watt F, Green H (1981) Involucrin synthesis is correlated with cell size in human cultures. J Cell Biol 90:738–742

    Article  CAS  PubMed  Google Scholar 

  • Wertz PW (1986) Lipids of keratinizing tissues. In: BereiterHahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Springer, Berlin, pp 815–823

    Chapter  Google Scholar 

  • Wertz PW, Downing DT (1983a) Acylglucosylceramides of pig epidermis: structure determination. J Lipid Res 24:753–758

    CAS  PubMed  Google Scholar 

  • Wertz PW, Downing DT (1983b) Ceramides of pig epidermis: structure determination. J Lipid Res 24:759–765

    CAS  PubMed  Google Scholar 

  • Wertz PW, Downing DT (1987) Covalently bound ω-hydroxyacylceramide in the stratum corneum. Biochim Biophys Acta 917:108–111

    Article  CAS  PubMed  Google Scholar 

  • Wertz PW, Downing DT (1989) Stratum corneum: biological and biochemical considerations. In: Hadgraft J, Guy RH (eds) Transdermal drug delivery: developmental issues and research initiatives. Marcel Dekker, New York and Basel, pp 1–22

    Google Scholar 

  • Wertz PW, Miethke MC et al (1985) The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol 84:410–412

    Article  CAS  PubMed  Google Scholar 

  • Wertz PW, Swartzendruber DC et al (1987) The composition and morphology of epidermal cyst lipids. J Invest Dermatol 89:419–425

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Maibach HI (1987) Animal models for transdermal drug delivery. In: Kydonieus AF, Berner B (eds) Transdermal delivery of drugs, vol 1. CRC Press, Boca Raton, pp 61–70

    Google Scholar 

  • Wester RC, Maibach HI (1989) In vivo methods for percutaneous absorption measurements. In: Brounaugh RL, Maibach HI (eds) Percutaneous absorption: mechanisms-methodology-drug delivery. Marcel Dekker, New York, pp 215–237

    Google Scholar 

  • Wester RC, Maibach HI (1992) Percutaneous-absorption of drugs. Clin Pharmacokinet 23(4):253–266

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Noonan PK et al (1983) Pharmacokinetics and bioavailability of intravenous and topical nitroglycerin in the rhesus-monkey – estimate of percutaneous 1st-pass metabolism. J Pharm Sci 72(7):745–748

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Maibach HI et al (1984) Minoxidil stimulates cutaneous blood-flow in human balding scalps – pharmacodynamics measured by laser doppler velocimetry and photopulse plethysmography. J Invest Dermatol 82(5):515–517

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Christoffel J et al (1998a) Human cadaver skin viability for in vitro percutaneous absorption: storage and detrimental effects of heat-separation and freezing. Pharm Res 15(1):82–84

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Melendres J et al (1998b) Percutaneous absorption of salicylic acid, theophylline, 2,4-dimethylamine, diethyl hexyl phthalic acid, and p-aminobenzoic acid in the isolated perfused porcine skin flap compared to man in vivo. Toxicol Appl Pharmacol 151(1):159–165

    Article  CAS  PubMed  Google Scholar 

  • Whitton JT, Everall JD (1973) Thickness of epidermis. Br J Dermatol 89(5):467–476

    Article  CAS  PubMed  Google Scholar 

  • Wilke K, Wepf R et al (2005) Initial investigations towards a better understanding of the barrier properties of the sweat gland apparatus. J Invest Dermatol 125(6):A29

    Google Scholar 

  • Wilke K, Wepf R et al (2006) Are sweat glands an alternate penetration pathway? Understanding the morphological complexity of the axillary sweat gland apparatus. Skin Pharmacol Physiol 19(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Wilkin JK, Fortner G et al (1985) Prostaglandins and nicotinate-provoked increase in cutaneous blood-flow. Clin Pharmacol Therap 38(3):273–277

    Article  CAS  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618

    Article  CAS  PubMed  Google Scholar 

  • Williams PL, Carver MP et al (1990) A physiologically relevant pharmacokinetic model of xenobiotic percutaneous-absorption utilizing the isolated perfused porcine skin flap. J Pharm Sci 79(4):305–311

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Cornwell PA et al (1992) On the non-Gaussian distribution of human skin permeabilities. Int J Pharm 86(1):69–77

    Article  CAS  Google Scholar 

  • Williams AC, Barry BW et al (1993) A critical comparison of some Raman-spectroscopic techniques for studies of human stratum-corneum. Pharm Res 10(11):1642–1647

    Article  CAS  PubMed  Google Scholar 

  • Wong O, Huntington J et al (1989) New alkyl N, N-dialkyl-substituted amino acetates as transdermal penetration enhancers. Pharm Res 6(4):286–295

    Article  CAS  PubMed  Google Scholar 

  • Wurster DE, Kramer SF (1961) Investigation of some factors influencing percutaneous absorption. J Pharm Sci 50(4):288

    Article  CAS  PubMed  Google Scholar 

  • Wurster DE, Ostrenga JA et al (1979) Sarin transport across excised human-skin. 1. Permeability and adsorption characteristics. J Pharm Sci 68(11):1406–1409

    Article  CAS  PubMed  Google Scholar 

  • Xhauflaire-Uhoda E, Vroome V et al (2006) Dynamics of skin barrier repair following topical applications of miconazole nitrate. Skin Pharmacol Physiol 19(5):290–294

    Article  CAS  PubMed  Google Scholar 

  • Xiao CH, Moore DJ et al (2005a) Permeation of dimyristoylphosphatidylcholine into skin – structural and spatial information from IR and Raman microscopic imaging. Vib Spectrosc 38(1–2):151–158

    Article  CAS  Google Scholar 

  • Xiao CH, Moore DJ et al (2005b) Feasibility of tracking phospholipid permeation into skin using infrared and Raman microscopic imaging. J Invest Dermatol 124(3):622–632

    Article  CAS  PubMed  Google Scholar 

  • Xueqin Z, Jing X et al (2005) Interaction of 1-dodecyl-azacycloheptan-2-one with mouse stratum corneum. J Biomater Sci Polym Ed 16(5):563–574

    Article  Google Scholar 

  • Yardley HJ (1983) Epidermal lipids. In: Goldsmith AL (ed) Biochemistry and physiology of skin. Oxford University Press, New York, pp 363–381

    Google Scholar 

  • Yardley HJ, Summerly R (1981) Lipid composition and metabolism in normal and diseased epidermis. Pharmacol Ther 13:357–383

    Article  CAS  PubMed  Google Scholar 

  • Zelickson A (1961) Electron microscopic study of epidermal sweat duct. Arch Dermatol 83(1):106

    Article  CAS  PubMed  Google Scholar 

  • Zhai HB, Dika E et al (2007) Tape-stripping method in man: comparison of evaporimetric methods. Skin Res Technol 13(2):207–210

    Article  PubMed  Google Scholar 

  • Zhao LG, Fang L et al (2008) Transdermal delivery of penetrants with differing lipophilicities using O-acylmenthol derivatives as penetration enhancers. Eur J Pharm Biopharm 69(1):199–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donald M. Cropek or Pankaj Karande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cropek, D.M., Karande, P. (2017). Models, Methods, and Measurements in Transdermal Drug Delivery. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53270-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53270-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53268-3

  • Online ISBN: 978-3-662-53270-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics