Skip to main content

The Effects of Vehicle Mixtures on Transdermal Absorption: Thermodynamics, Mechanisms, Assessment, and Prediction

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin

Abstract

In industrial settings, dermal exposure to toxic substances usually occurs with the substance carried in a liquid mixture. The mixture may contain solvents used in extraction processes, reaction by-products, wetting agents, surfactants, etc. For pharmaceutical applications, a dosing vehicle is used to stabilize the formulation and modulate absorption. In either case, the composition of the vehicle affects the thermodynamic and transport properties of the penetrant. The ability to predict the effect of vehicle composition on the relevant properties of the penetrant and model exposure to the penetrant would be valuable for evaluating risk in toxic exposure or maximizing the therapeutic value in pharmaceutical applications. This chapter exhibits some of the most recent works in the modeling and prediction of skin permeability from complex vehicle mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham MH, Martins F (2004) Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci 93:1508–1523

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Kisak E, Karande P et al (2010) Multicomponent chemical enhancer formulations for transdermal drug delivery: more is not always better. J Controll Release 144:175–180

    Article  CAS  Google Scholar 

  • Aungst BJ (1989) Structure/effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharm Res 6:244–247

    Article  CAS  PubMed  Google Scholar 

  • Avdeef A (2012) Absorption and drug development: solubility, permeability, and charge state, John Wiley & Sons, Inc., Hoboken, New Jersey, 2nd edn. p 742

    Google Scholar 

  • Baroni A, Buommino E, De Gregorio V et al (2012) Structure and function of the epidermis related to barrier properties. Clin Dermatol 30:257–262

    Article  PubMed  Google Scholar 

  • Barton AFM (1975) Solubility parameters. Chem Rev 75:731–753

    Article  CAS  Google Scholar 

  • Baynes R, Riviere J (2004) Mixture additives inhibit the dermal permeation of the fatty acid, ricinoleic acid. Toxicol Lett 147:15–26

    Article  CAS  PubMed  Google Scholar 

  • Baynes RE, Brooks JD, Budsaba K et al (2001) Mixture effects of JP-8 additives on the dermal disposition of jet fuel components. Toxicol Appl Pharmacol 175:269–281

    Article  CAS  PubMed  Google Scholar 

  • Baynes RE, Brownie C, Freeman H, Riviere JE (1996) In vitropercutaneous absorption of benzidine in complex mechanistically defined chemical mixtures. Toxicol Appl Pharmacol 141:497–506

    Article  CAS  PubMed  Google Scholar 

  • Baynes RE, Xia XR, Imran M, Riviere JE (2008) Quantification of chemical mixture interactions modulating dermal absorption using a multiple membrane fiber array. Chem Res Toxicol 21:591–599

    Article  CAS  PubMed  Google Scholar 

  • Bouwstra JA (1997) The skin barrier, a well-organized membrane. Colloids Surf 123–124:403–413

    Article  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36

    Article  CAS  PubMed  Google Scholar 

  • Brandner JM (2009) Tight junctions and tight junction proteins in mammalian epidermis. Eur J Pharm Biopharm 72:289–294

    Article  CAS  PubMed  Google Scholar 

  • Bronaugh RL, Stewart RF (1985) Methods for in vitro percutaneous absorption studies iv: the flow-through diffusion cell. J Pharm Sci 74:64–67

    Article  CAS  PubMed  Google Scholar 

  • Bunge A, Cleek R, Vecchia B (1995) A new method for estimating dermal absorption from chemical exposure. 3. Compared with steady-state methods for prediction and data analysis. Pharm Res 12:972–982

    Article  CAS  PubMed  Google Scholar 

  • Bunge AL, Cleek RL (1995) A new method for estimating dermal absorption from chemical exposure: 2. Effect of molecular weight and octanol-water partitioning. Pharm Res 12:88–95

    Article  CAS  PubMed  Google Scholar 

  • Carpentieri-Rodrigues LN, Zanluchi JM, Grebogi IH (2007) Percutaneous absorption enhancers: mechanisms and potential. Braz Arch Bio Tech 50:949–961

    Article  CAS  Google Scholar 

  • Chen C-C (1993) A segment-based local composition model for the gibbs energy of polymer solutions. Fluid Phase Equilib 83:301–312

    Article  CAS  Google Scholar 

  • Chen C-C, Crafts PA (2006) Correlation and prediction of drug molecule solubility in mixed solvent systems with the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model. Ind Eng Chem Res 45:4816–4824

    Article  CAS  Google Scholar 

  • Chen C-C, Song Y (2004) Solubility modeling with a nonrandom two-liquid segment activity coefficient model. Ind Eng Chem Res 43:8354–8362

    Article  CAS  Google Scholar 

  • Cleek RL, Bunge AL (1993) A new method for estimating dermal absorption from chemical exposure. 1. General approach. Pharm Res 10:497–506

    Article  CAS  PubMed  Google Scholar 

  • Cross S, Pugh WJ, Hadgraft J, Roberts M (2001) Probing the effect of vehicles on topical delivery: understanding the basic relationship between solvent and solute penetration using silicone membranes. Pharm Res 18:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Damien F, Boncheva M (2009) The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J Invest Dermatol 130:611–614

    Article  PubMed  CAS  Google Scholar 

  • Daniels R, Knie U (2007) Galenics of dermal products: vehicles, properties and drug release. J Dtsch Dermatol Ges 5:367–383

    Article  PubMed  Google Scholar 

  • Dias M, Hadgraft J, Lane ME (2007) Influence of membrane–solvent–solute interactions on solute permeation in skin. Int J Pharm 340:65–70

    Article  CAS  PubMed  Google Scholar 

  • Diedrichs A, Gmehling J (2010) Solubility calculation of active pharmaceutical ingredients in alkanes, alcohols, water and their mixtures using various activity coefficient models. Ind Eng Chem Res 50:1757–1769

    Article  CAS  Google Scholar 

  • Dupuis D, Rougier A, Roguet R, Lotte C (1986) The measurement of the stratum corneum reservoir: a simple method to predict the influence of vehicles on in vivo percutaneous absorption. Br J Dermatol 115:233–238

    Article  CAS  PubMed  Google Scholar 

  • El Maghraby GM, Alanazi FK, Alsarra IA (2009) Transdermal delivery of tadalafil. I. Effect of vehicles on skin permeation. Drug Dev Ind Pharm 35:329–336

    Article  PubMed  CAS  Google Scholar 

  • Elias PM (2012) Structure and function of the stratum corneum extracellular matrix. J Invest Dermatol 132:2131–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn G (1990) Physicochemical determinants of skin absorption. In: Gerrity T, Henry C (eds) Principles of route-to-route extrapolation for risk assessment. Elsevier, New York, pp 93–127

    Google Scholar 

  • Franz TJ (1975) Percutaneous absorption. On the relevance of in vitro data. J Invest Dermatol 64:190–195

    Article  CAS  PubMed  Google Scholar 

  • Frasch HF, Barbero AM, Hettick JM, Nitsche JM (2011) Tissue binding affects the kinetics of theophylline diffusion through the stratum corneum barrier layer of skin. J Pharm Sci 100:2989–2995

    Article  CAS  PubMed  Google Scholar 

  • Geinoz S, Guy R, Testa B, Carrupt P-A (2004) Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical evaluation. Pharm Res 21:83–92

    Article  CAS  PubMed  Google Scholar 

  • Geinoz S, Rey S, Boss G et al (2002) Quantitative structure-permeation relationships for solute transport across silicone membranes. Pharm Res 19:1622–1629

    Article  CAS  PubMed  Google Scholar 

  • Ghafourian T, Samaras EG, Brooks JD, Riviere JE (2010a) Modelling the effect of mixture components on permeation through skin. Int J Pharm 398:28–32

    Article  CAS  PubMed  Google Scholar 

  • Ghafourian T, Samaras EG, Brooks JD, Riviere JE (2010b) Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci 41:612–616

    Article  CAS  PubMed  Google Scholar 

  • Grégoire S, Ribaud C, Benech F et al (2009) Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations. Br J Dermatol 160:80–91

    Article  PubMed  Google Scholar 

  • Gross J, Sadowski G (2001) Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40:1244–1260

    Article  CAS  Google Scholar 

  • Gross J, Sadowski G (2002) Application of the perturbed-chain SAFT equation of state to associating systems. Ind Eng Chem Res 41:5510–5515

    Article  CAS  Google Scholar 

  • Grubauer G, Feingold K, Harris R, Elias P (1989) Lipid content and lipid type as determinants of the epidermal permeability barrier. J Lipid Res 30:89–96

    CAS  PubMed  Google Scholar 

  • Hilal SH, Karickhoff SW, Carreira LA (2004) Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds. QSAR Comb Sci 23:709–720

    Article  CAS  Google Scholar 

  • Hilton J, Woollen BH, Scott RC et al (1994) Vehicle effects on in vitro percutaneous absorption through rat and human skin. Pharm Res 11:1396–1400

    Article  CAS  PubMed  Google Scholar 

  • Hostynek J, Magee P (1997) Modelling in vivo human skin absorption. Q Struct Act Relat 16:473–479

    Article  CAS  Google Scholar 

  • Hotchkiss SAM, Miller JM, Caldwell J (1992) Percutaneous absorption of benzyl acetate through rat skin in vitro. 2. Effect of vehicle and occlusion. Food Chem Toxicol 30:145–153

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SA, Li SK (2010) Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int J Pharm 383:89–98

    Article  CAS  PubMed  Google Scholar 

  • Ingram T, Richter U, Mehling T, Smirnova I (2011) Modelling of ph dependent n-octanol/water partition coefficients of ionizable pharmaceuticals. Fluid Phase Equilib 305:197–203

    Article  CAS  Google Scholar 

  • Jepson G, McDougal J (1999) Predicting vehicle effects on the dermal absorption of halogenated methanes using physiologically based modeling. Toxicol Sci 48:180–188

    Article  CAS  PubMed  Google Scholar 

  • Johnson ME, Berk DA, Blankschtein D et al (1996) Lateral diffusion of small compounds in human stratum corneum and model lipid bilayer systems. Biophys J 71:2656–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Karadzovska D, Brooks JD, Monteiro-Riviere NA, Riviere JE (2013a) Predicting skin permeability from complex vehicles. Adv Drug Delivery Rev 65:265–277

    Article  CAS  Google Scholar 

  • Karadzovska D, Brooks JD, Riviere JE (2013b) Modeling the effect of experiemntal variables on the in vitro permeation of six model compounds across porcine skin. Int J Pharm 443:58–67

    Article  CAS  PubMed  Google Scholar 

  • Karadzovska D, Riviere JE (2013) Assessing vehicle effects on skin absorption using artificial membrane systems. Eur J Pharm Sci 50(5):569–576

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Jain A, Mitragotri S (2006) Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. J Controll Release 115:85–93

    Article  CAS  Google Scholar 

  • Karande P, Mitragotri S (2009) Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta Biomem 1788:2362–2373

    Article  CAS  Google Scholar 

  • Kirjavainen M, Mönkkönen J, Saukkosaari M et al (1999) Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Controll Release 58:207–214

    Article  CAS  Google Scholar 

  • Kitagawa S, Yokochi N, Murooka N (1995) Ph-dependence of phase transition of the lipid bilayer of liposomes of stratum corneum lipids. Int J Pharm 126:49–56

    Article  CAS  Google Scholar 

  • Krill SL, Knutson K, Higuchi WI (1992) Ethanol effects on the stratum corneum lipid phase behavior. Biochim Biophys Acta Biomem 1112:273–280

    Article  CAS  Google Scholar 

  • Lampe MA, Burlingame AL, Whitney J et al (1983) Human stratum corneum lipids: characterization and regional variations. J Lipid Res 24:120–130

    CAS  PubMed  Google Scholar 

  • López O, Cócera M, de la Maza A et al (2000) Different stratum corneum lipid liposomes as models to evaluate the effect of the sodium dodecyl sulfate. Biochim Biophys Acta Biomem 1508:196–209

    Article  Google Scholar 

  • Matsuda H, Kaburagi K, Kurihara K et al (2010) Prediction of solubilities of pharmaceutical compounds in water + co-solvent systems using an activity coefficient model. Fluid Phase Equilib 290:153–157

    Article  CAS  Google Scholar 

  • de la Maza A, Lopez O, Coderch L, Parra JL (1998) Interactions of oxyethylenated nonylphenols with liposomes mimicking the stratum corneum lipid composition. Colloids Surf A 145:83–91

    Article  Google Scholar 

  • Mengarelli AC, Brignole EA, Bottini SB (1999) Activity coefficients of associating mixtures by group contribution. Fluid Phase Equilib 163:195–207

    Article  CAS  Google Scholar 

  • Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: theory and invitro experimental measurement. AIChE J 21:985–996

    Article  CAS  Google Scholar 

  • Mills PC (2007) Vehicle effects on the in vitro penetration of testosterone through equine skin. Vet Res Comm 31:227–233

    Article  CAS  Google Scholar 

  • Mills PC, Magnusson BM, Cross SE (2006) The effects of vehicle and region of application on in vitro penetration of testosterone through canine skin. Vet J 171:276–280

    Article  CAS  PubMed  Google Scholar 

  • Mills PC, Magnusson BM, Cross SE (2005) Effects of vehicle and region of application on absorption of hydrocortisone through canine skin. Am J Vet Res 66:43–47

    Article  CAS  PubMed  Google Scholar 

  • Mirmehrabi M, Rohani S, Perry L (2006a) Thermodynamic modeling of activity coefficient and prediction of solubility: part 1. Predict Models J Pharm Sci 95:790–797

    Article  CAS  PubMed  Google Scholar 

  • Mirmehrabi M, Rohani S, Perry L (2006b) Thermodynamic modeling of activity coefficient and prediction of solubility: part 2. Semipredictive or semiempirical models. J Pharm Sci 95:798–809

    Article  CAS  PubMed  Google Scholar 

  • Mohsen-Nia M, Ebrahimabadi AH, Niknahad B (2012) Partition coefficient n-octanol/water of propranolol and atenolol at different temperatures: experimental and theoretical studies. J Chem Thermodyn 54:393–397

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA (2010) Structure and function of skin. In: Monteiro-Riviere NA (ed) Toxicology of the skin: target organ series. Informa Healthcare, USA, Inc, New York, pp 1–18

    Google Scholar 

  • Monti D, Saettone MF, Giannaccini B, Galli-Angeli D (1995) Enhancement of transdermal penetration of dapiprazole through hairless mouse skin. J Controll Release 33:71–77

    Article  CAS  Google Scholar 

  • Moser K, Kriwet K, Froehlich C et al (2001) Supersaturation: enhancement of skin penetration and permeation of a lipophilic drug. Pharm Res 18:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Moss GP, Dearden JC, Patel H, Cronin MTD (2002) Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol Vitro 16:299–317

    Article  CAS  Google Scholar 

  • Mota FL, Queimada AJ, Andreatta AE et al (2012) Calculation of drug-like molecules solubility using predictive activity coefficient models. Fluid Phase Equilib 322–323:48–55

    Article  CAS  Google Scholar 

  • Nti-Gyabaah J, Chan V, Chiew YC (2009) Solubility and limiting activity coefficient of simvastatin in different organic solvents. Fluid Phase Equilib 280:35–41

    Article  CAS  Google Scholar 

  • O’Neill CA, Garrod D (2011) Tight junction proteins and the epidermis. Exp Dermatol 20:88–91

    Article  PubMed  CAS  Google Scholar 

  • Oliveira G, Hadgraft J, Lane ME (2012a) The role of vehicle interactions on permeation of an active through model membranes and human skin. Int J Cosmet Sci 34:536–545

    Article  CAS  PubMed  Google Scholar 

  • Oliveira G, Hadgraft J, Lane ME (2012b) The influence of volatile solvents on transport across model membranes and human skin. Int J Pharm 435:38–49

    Article  CAS  PubMed  Google Scholar 

  • Pieper J, Charalambopoulou G, Steriotis T et al (2003) Water diffusion in fully hydrated porcine stratum corneum. Chem Phys 292:465–476

    Article  CAS  Google Scholar 

  • Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9:663–669

    Article  CAS  PubMed  Google Scholar 

  • Qiao GL, Brooks JD, Baynes RE et al (1996) The use of mechanistically defined chemical mixtures (MDCM) to assess component effects on the percutaneous absorption and cutaneous disposition of topically exposed chemicals: I. Studies with parathion mixtures in isolated perfused porcine skin. Toxicol Appl Pharmacol 141:473–486

    Article  CAS  PubMed  Google Scholar 

  • Riviere J, Bowman K, Monteiro-Riviere N et al (1986) The isolated perfused porcine skin flap (IPPSF). I. A novel in vitro model for percutaneous absorption and cutaneous toxicology studies. Fundam Appl Toxicol 7:444–453

    Article  CAS  PubMed  Google Scholar 

  • Riviere J, Brooks J (2005) Predicting skin permeability from complex chemical mixtures. Toxicol Appl Pharmacol 208:99–110

    Article  CAS  PubMed  Google Scholar 

  • Riviere J, Brooks J (2007) Prediction of dermal absorption from complex chemical mixtures: incorporation of vehicle effects and interactions into a QSPR framework. SAR QSAR Environ Res 18:31–44

    Article  CAS  PubMed  Google Scholar 

  • Riviere J, Monteiro-Riviere N (1991) The isolated perfused porcine skin flap as an in vitro model for percutaneous absorption and cutaneous toxicology. Crit Rev Toxicol 21:329–344

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Baynes RE, Xia X-R (2007) Membrane-coated fiber array approach for predicting skin permeability of chemical mixtures from different vehicles. Toxicol Sci 99:153–161

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Brooks JD (2011) Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci 119:224–232

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Brooks JD, Yeatts JL, Koivisto EL (2010) Surfactant effects on skin absorption of model organic chemicals: implications for dermal risk assessment studies. J Toxicol Environ Health Part A 73:725–737

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE, Williams PL (1992) Pharmacokinetic implications of changing blood flow in skin. J Pharm Sci 81:601–602

    Article  CAS  PubMed  Google Scholar 

  • Rosado C, Cross SE, Pugh WJ et al (2003) Effect of vehicle pretreatment on the flux, retention, and diffusion of topically applied penetrants in vitro. Pharm Res 20:1502–1507

    Article  CAS  PubMed  Google Scholar 

  • Samaras EG, Riviere JE, Ghafourian T (2012) The effect of formulations and experimental conditions on in vitro human skin permeation—data from updated edetox database. Int J Pharm 434:280–291

    Article  CAS  PubMed  Google Scholar 

  • Sherertz EF, Sloan KB, McTiernan RG (1987) Effect of skin pretreatment with vehicle alone or drug in vehicle on flux of a subsequently applied drug: results of hairless mouse skin and diffusion cell studies. J Invest Dermatol 89:249–252

    Article  CAS  PubMed  Google Scholar 

  • Shokri J, Nokhodchi A, Dashbolaghi A et al (2001) The effect of surfactants on the skin penetration of diazepam. Int J Pharm 228:99–107

    Article  CAS  PubMed  Google Scholar 

  • Sinkó B, Garrigues TM, Balogh GT et al (2012) Skin–PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci 45:698–707

    Article  PubMed  CAS  Google Scholar 

  • Skazik C, Wenzel J, Marquardt Y et al (2011) P-glycoprotein (ABCB1) expression in human skin is mainly restricted to dermal components. Exp Dermatol 20:450–452

    Article  PubMed  Google Scholar 

  • Sloan KB, Koch SAM, Siver KG, Flowers FP (1986) Use of solubility parameters of drug and vehicle to predict flux through skin. J Invest Dermatol 87:244–252

    Article  CAS  PubMed  Google Scholar 

  • Spyriouni T, Krokidis X, Economou IG (2011) Thermodynamics of pharmaceuticals: prediction of solubility in pure and mixed solvents with PC-SAFT. Fluid Phase Equilib 302:331–337

    Article  CAS  Google Scholar 

  • Squier CA, Cox P, Wertz PW (1991) Lipid content and water permeability of skin and oral mucosa. J Invest Dermatol 96:123–126

    Article  CAS  PubMed  Google Scholar 

  • Stinchcomb A, Pirot F, Touraille G et al (1999) Chemical uptake into human stratum corneum in vivo from volatile and non-volatile solvents. Pharm Res 16:1288–1293

    Article  CAS  PubMed  Google Scholar 

  • Stinchcomb AL (2003) Xenobiotic bioconversion in human epidermis models. Pharm Res 20:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Storm EJ, Collier WS, Steward FR, Bronaugh RL (1990) Metabolism of xenobiotics during percutaneous penetration: role of absorption rate and cutaneous enzyme activity. Toxicol Sci 15:132–141

    Article  CAS  Google Scholar 

  • Suhonen M, Li SK, Higuchi WI, Herron JN (2008) A liposome permeability model for stratum corneum lipid bilayers based on commercial lipids. J Pharm Sci 97:4278–4293

    Article  CAS  PubMed  Google Scholar 

  • Suhonen TM, Bouwstra JA, Urtti A (1999) Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J Controll Release 59:149–161

    Article  CAS  Google Scholar 

  • Surber C, Wilhelm K-P, Hori M et al (1990) Optimization of topical therapy: partitioning of drugs into stratum corneum. Pharm Res 7:1320–1324

    Article  CAS  PubMed  Google Scholar 

  • Swartzendruber DC, Wertz PW, Madison KC, Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88:709–713

    Article  CAS  PubMed  Google Scholar 

  • Talreja P, Kasting G, Kleene N et al (2001) Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum. AAPS J 3:48–56

    Article  Google Scholar 

  • Taylor R, Kooijman HA (1991) Composition derivatives of activity coefficient models (for the estimation of thermodynamic factors in diffusion). Chem Eng Commun 102:87–106

    Article  CAS  Google Scholar 

  • Traynor MJ, Wilkinson SC, Williams FM (2007) The influence of water mixtures on the dermal absorption of glycol ethers. Toxicol Appl Pharmacol 218:128–134

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta H (1996) Skin absorption of solvent mixtures–effect of vehicles on skin absorption of toluene. Ind Health 34:369–378

    Article  CAS  PubMed  Google Scholar 

  • Tung H-H, Tabora J, Variankaval N et al (2008) Prediction of pharmaceutical solubility via NRTL-SAC and COSMO-SAC. J Pharm Sci 97:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Van der Merwe D, Riviere JE (2005a) Comparative studies on the effects of water, ethanol and water/ethanol mixtures on chemical partitioning into porcine stratum corneum and silastic membrane. Toxicol Vitro 19:69–77

    Article  CAS  Google Scholar 

  • Van der Merwe D, Riviere JE (2005b) Effect of vehicles and sodium lauryl sulphate on xenobiotic permeability and stratum corneum partitioning in porcine skin. Toxicology 206:325–335

    Article  PubMed  CAS  Google Scholar 

  • Vávrová K, Hrabálek A, Doležal P et al (2003) Synthetic ceramide analogues as skin permeation enhancers: structure–activity relationships. Bioorg Med Chem 11:5381–5390

    Article  PubMed  CAS  Google Scholar 

  • Vignes A (1966) Diffusion in binary solutions. Variation of diffusion coefficient with composition. Ind Eng Chem Fund 5:189–199

    Article  CAS  Google Scholar 

  • Walker RB, Smith EW (1996) The role of percutaneous penetration enhancers. Adv Drug Delivery Rev 18:295–301

    Article  CAS  Google Scholar 

  • Wertz PW, Abraham W, Landmann L, Downing DT (1986) Preparation of liposomes from stratum corneum lipids. J Invest Dermatol 87:582–584

    Article  CAS  PubMed  Google Scholar 

  • Wertz PW, Madison KC, Downing DT (1989) Covalently bound lipids of human stratum corneum. J Invest Dermatol 92:109–111

    Article  CAS  PubMed  Google Scholar 

  • Wiechers JW (1989) The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm World Sci 11:185–198

    CAS  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Delivery Rev 56:603–618

    Article  CAS  Google Scholar 

  • Williams AC, Barry BW (1991) Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm Res 8:17–24

    Article  CAS  PubMed  Google Scholar 

  • Williams PL, Thompson D, Qiao G et al (1996) The use of mechanistically defined chemical mixtures (MDCM) to assess mixture component effects on the percutaneous absorption and cutaneous disposition of topically exposed chemicals: II. Development of a general dermatopharmacokinetic model for use in risk assessment. Toxicol Appl Pharmacol 141:487–496

    Article  CAS  PubMed  Google Scholar 

  • Wilschut A, ten Berge WF, Robinson PJ, McKone TE (1995) Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere 30:1275–1296

    Article  CAS  PubMed  Google Scholar 

  • Xia X-R, Baynes R, Monteiro-Riviere N et al (2003) A novel in-vitro technique for studying percutaneous permeation with a membrane-coated fiber and gas chromatography/mass spectrometry: part I. Performances of the technique and determination of the permeation rates and partition coefficients of chemical mixtures. Pharm Res 20:275–282

    Article  CAS  PubMed  Google Scholar 

  • Xia XR, Baynes RE, Monteiro-Riviere NA, Riviere JE (2004) A compartment model for the membrane-coated fiber technique used for determining the absorption parameters of chemicals into lipophilic membranes. Pharm Res 21:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Xia XR, Baynes RE, Monteiro-Riviere NA, Riviere JE (2005) Membrane uptake kinetics of jet fuel aromatic hydrocarbons from aqueous solutions studied by a membrane-coated fiber technique. Toxicol Mech Methods 15:307–316

    Article  CAS  PubMed  Google Scholar 

  • Xia X-R, Baynes RE, Monteiro-Riviere NA, Riviere JE (2007) An experimentally based approach for predicting skin permeability of chemicals and drugs using a membrane-coated fiber array. Toxicol Appl Pharmacol 221:320–328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Chittenden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chittenden, J.T., Riviere, J.E. (2017). The Effects of Vehicle Mixtures on Transdermal Absorption: Thermodynamics, Mechanisms, Assessment, and Prediction. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53270-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53270-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53268-3

  • Online ISBN: 978-3-662-53270-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics