Skip to main content

Confocal Microscopy for Visualization of Skin Penetration

  • Chapter
  • First Online:
  • 1399 Accesses

Abstract

Confocal microscopic techniques have been around for over 50 years. However, only in the last two decades has there been a truly widespread use of this technology in life sciences. Today there are different confocal techniques available and at the heart of all these techniques is the ability to differentiate between the light originating from different planes of the specimen. This ability is quite important when studying thick biological specimen such as skin microscopically, otherwise a lot of the information can get lost in the form of blur. In addition, due to advances in material sciences and photonics, microscopes are able to image in vitro as well as in vivo and have allowed us to couple microscopes with spectroscopic techniques which provide valuable information the in identification and characterization of structures. In this book chapter, we discuss basic principles of confocal laser scanning microscopy, 2-photon fluorescence microscopy, confocal Raman microscopy, coherent Raman microscopy, and their applications in understanding the skin penetration of various substances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addicks WJ, Flynn GL, Weiner N (1987) Validation of a flow-through diffusion cell for use in transdermal research. Pharm Res 4(4):337–341

    Article  CAS  PubMed  Google Scholar 

  • Agarwal R, Katare OP, Vyas SP (2000) The pilosebaceous unit: a pivotal route for topical drug delivery. Methods Find Exp Clin Pharmacol 22(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99(1):53–62. doi:10.1016/j.jconrel.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  • Ashtikar M, Matthäus C, Krafft C, Popp J, Fahr A (2012) Non-invasive imaging of transdermal drug penetration profiles using Raman microscopy. 9th International conference and workshop on Biological Barriers – in vitro and in silico tools for drug delivery and nanosafety research, Saarland University, Saarbrücken, 29 Feb–9 Mar 2012

    Google Scholar 

  • Benfeldt E (1999) In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects. Acta Derm Venereol Suppl (Stockh) 206:1–59

    CAS  Google Scholar 

  • Betz G, Imboden R, Imanidis G (2001) Interaction of liposome formulations with human skin in vitro. Int J Pharm 229(1–2):117–129

    Article  CAS  PubMed  Google Scholar 

  • Bhatia KS, Singh J (1999) Effect of linolenic acid/ethanol or limonene/ethanol and iontophoresis on the in vitro percutaneous absorption of LHRH and ultrastructure of human epidermis. Int J Pharm 180(2):235–250

    Article  CAS  PubMed  Google Scholar 

  • Bohm M, Luger TA (1998) The pilosebaceous unit is part of the skin immune system. Dermatology 196(1):75–79

    Article  CAS  PubMed  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL (2002) Skin structure and mode of action of vesicles. Adv Drug Deliv Rev 54(Suppl 1):S41–S55

    Article  CAS  PubMed  Google Scholar 

  • Breunig HG, Buckle R, Kellner-Hofer M, Weinigel M, Lademann J, Sterry W et al (2012) Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin. Microsc Res Tech 75(4):492–498. doi:10.1002/jemt.21082

    Article  PubMed  Google Scholar 

  • Carrer DC, Vermehren C, Bagatolli LA (2008) Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release 132(1):12–20. doi:10.1016/j.jconrel.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  • Caspers PJ, Lucassen GW, Bruining HA, Puppels GJ (2000) Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin. J Raman Spectrosc 31(8–9):813–818. doi:10.1002/1097-4555(200008/09)31:8/9<813::AID-JRS573>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Caspers PJ, Williams AC, Carter EA, Edwards HG, Barry BW, Bruining HA et al (2002) Monitoring the penetration enhancer dimethyl sulfoxide in human stratum corneum in vivo by confocal Raman spectroscopy. Pharm Res 19(10):1577–1580

    Article  CAS  PubMed  Google Scholar 

  • Chabay I, Klauminzer GK, Hudson BS (1976) Coherent anti-Stokes Raman spectroscopy (CARS): Improved experimental design and observation of new higher-order processes. Appl Phys Lett 28(1):27–29

    Article  CAS  Google Scholar 

  • Chen M, Liu X, Fahr A (2010) Skin delivery of ferulic acid from different vesicular systems. J Biomed Nanotechnol 6(5):577–585

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Liu X, Fahr A (2011) Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: in vitro study with finite and infinite dosage application. Int J Pharm 408(1–2):223–234. doi:10.1016/j.ijpharm.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  • Cheng JX (2007) Coherent anti-Stokes Raman scattering microscopy. Appl Spectrosc 61(9):197–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrit L, Bastien P, Biatry B, Simonnet JT, Potter A, Minondo AM et al (2007) In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC. Biopolymers 85(4):359–369. doi:10.1002/bip.20644

    Article  CAS  PubMed  Google Scholar 

  • Dragicevic-Curic N, Grafe S, Albrecht V, Fahr A (2008) Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumours in mice: a pilot study. J Photochem Photobiol B 91(1):41–50. doi:10.1016/j.jphotobiol.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2009) Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces 70(2):198–206. doi:10.1016/j.colsurfb.2008.12.030

    Article  CAS  PubMed  Google Scholar 

  • du Plessis J, Ramachandran C, Weiner N, Müller DG (1994) The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm 103(3):277–282. doi:10.1016/0378-5173(94)90178-3

    Article  Google Scholar 

  • Du Q, Raksuntorn N, Younan NH, King RL (2008) End-member extraction for hyperspectral image analysis. Appl Opt 47(28):F77–F84

    Article  PubMed  Google Scholar 

  • Dunn KW, Young PA (2006) Principles of multiphoton microscopy. Nephron Exp Nephrol 103(2):e33–e40

    Article  PubMed  Google Scholar 

  • Eesley GL (1981) Coherent Raman spectroscopy, GL Eesley (ed). Pergamon Press, Oxford/New York

    Google Scholar 

  • Evans CL, Potma EO, Puoris’haag M, Cote D, Lin CP, Xie XS (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 102(46):16807–16812. doi:10.1073/pnas.0508282102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Failloux N, Baron MH, Abdul-Malak N, Perrier E (2004) Contribution of encapsulation on the biodisponibility of retinol. Int J Cosmet Sci 26(2):71–77. doi:10.1111/j.0412-5463.2004.00206.x

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Hsu LR, Huang YB, Tsai YH (1999) Evaluation of transdermal iontophoresis of enoxacin from polymer formulations: in vitro skin permeation and in vivo microdialysis using Wistar rat as an animal model. Int J Pharm 180(2):137–149

    Article  CAS  PubMed  Google Scholar 

  • Forster M, Bolzinger MA, Ach D, Montagnac G, Briancon S (2011) Ingredients tracking of cosmetic formulations in the skin: a confocal Raman microscopy investigation. Pharm Res 28(4):858–872. doi:10.1007/s11095-010-0342-0

    Article  PubMed  Google Scholar 

  • Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C et al (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861. doi:10.1126/science.1165758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grams YY, Alaruikka S, Lashley L, Caussin J, Whitehead L, Bouwstra JA (2003) Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin. Eur J Pharm Sci 18(5):329–336

    Article  CAS  PubMed  Google Scholar 

  • Grams YY, Whitehead L, Cornwell P, Bouwstra JA (2004) Time and depth resolved visualisation of the diffusion of a lipophilic dye into the hair follicle of fresh unfixed human scalp skin. J Control Release 98(3):367–378. doi:10.1016/j.jconrel.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  • Hanson KM, Bardeen CJ (2009) Application of nonlinear optical microscopy for imaging skin. Photochem Photobiol 85(1):33–44. doi:10.1111/j.1751-1097.2008.00508.x

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kagetsu N, Taniguchi Y, Weintraub R, Chapman-Winokur RL, Kasiborski A (1991) Immunohistochemistry and electron microscopy in Langerhans cell histiocytosis confined to the skin. J Am Acad Dermatol 25(6 Pt 1):1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Heuke S, Ashtikar M, Matthäus C, Fahr A, Dietzek B, Popp J (2012) Coherent anti-stokes Raman scattering microscopy of human skin (Unpublished data)

    Google Scholar 

  • Hofland HE, van der Geest R, Bodde HE, Junginger HE, Bouwstra JA (1994) Estradiol permeation from nonionic surfactant vesicles through human stratum corneum in vitro. Pharm Res 11(5):659–664

    Article  CAS  PubMed  Google Scholar 

  • Hofland HE, Bouwstra JA, Bodde HE, Spies F, Junginger HE (1995) Interactions between liposomes and human stratum corneum in vitro: freeze fracture electron microscopical visualization and small angle X-ray scattering studies. Br J Dermatol 132(6):853–866

    Article  CAS  PubMed  Google Scholar 

  • Hollricher O (2011) Raman instrumentation for confocal Raman microscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman microscopy, Springer Series in Optical Sciences. 158. Springer, Berlin/Heidelberg, pp 43–60

    Google Scholar 

  • Hollricher O, Ibach W (2011) High-resolution optical and confocal microscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman microscopy, Springer Series in Optical Sciences. 158. Springer, Berlin/Heidelberg, pp 1–20

    Google Scholar 

  • Jimbo Y, Ishihara M, Osamura H, Takano M, Ohara M (1983) Influence of vehicles on penetration through human epidermis of benzyl alcohol, isoeugenol and methyl isoeugenol. J Dermatol 10(3):241–250

    Article  CAS  PubMed  Google Scholar 

  • Kanerva L (1990) Electron microscopy of the effects of dithranol on healthy and on psoriatic skin. Am J Dermatopathol 12(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen M, Urtti A, Jaaskelainen I, Suhonen TM, Paronen P, Valjakka-Koskela R et al (1996) Interaction of liposomes with human skin in vitro--the influence of lipid composition and structure. Biochim Biophys Acta 1304(3):179–189

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen M, Urtti A, Monkkonen J, Hirvonen J (2000) Influence of lipids on the mannitol flux during transdermal iontophoresis in vitro. Eur J Pharm Sci 10(2):97–102

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Matsuzawa T, Sugibayashi K, Morimoto Y, Kimura M (1994) Analysis of the combined effect of 1-menthol and ethanol as skin permeation enhancers based on a two-layer skin model. Pharm Res 11(1):96–103

    Article  CAS  PubMed  Google Scholar 

  • Konig K, Ehlers A, Stracke F, Riemann I (2006) In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol Physiol 19(2):78–88. doi:10.1159/000091974

    Article  CAS  PubMed  Google Scholar 

  • Kriwet K, Müller-Goymann CC (1995) Diclofenac release from phospholipid drug systems and permeation through excised human stratum corneum. Int J Pharm 125(2):231–242. doi:10.1016/0378-5173(95)00130-B

    Article  CAS  Google Scholar 

  • Le TT, Langohr IM, Locker MJ, Sturek M, Cheng JX (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12(5):054007. doi:10.1117/1.2795437

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieb LM, Ramachandran C, Egbaria K, Weiner N (1992) Topical delivery enhancement with multilamellar liposomes into pilosebaceous units: I. In vitro evaluation using fluorescent techniques with the hamster ear model. J Invest Dermatol 99(1):108–113

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Somogyi G, Bodor N (1989) Effect of choline esters and oleic acid on the penetration of acyclovir, estradiol, hydrocortisone, nitroglycerin, retinoic acid and trifluorothymidine across hairless mouse skin in vitro. Acta Pharm Nord 1(5):279–286

    CAS  PubMed  Google Scholar 

  • Mélot M, Pudney PDA, Williamson A-M, Caspers PJ, Van Der Pol A, Puppels GJ (2009) Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy. J Control Release 138(1):32–39. doi:10.1016/j.jconrel.2009.04.023

    Article  PubMed  Google Scholar 

  • Min W, Freudiger CW, Lu S, Xie XS (2011) Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem 62:507–530. doi:10.1146/annurev.physchem.012809.103512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami T, Yoshioka M, Yumoto R, Higashi Y, Shigeki S, Ikuta Y et al (1998) Topical delivery of keloid therapeutic drug, tranilast, by combined use of oleic acid and propylene glycol as a penetration enhancer: evaluation by skin microdialysis in rats. J Pharm Pharmacol 50(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar P, Kovalev A, Volkmer A (2009) Vibrational imaging based on stimulated Raman scattering microscopy. New J Phys 11(3):033026

    Article  Google Scholar 

  • Niemiec SM, Ramachandran C, Weiner N (1995) Influence of nonionic liposomal composition on topical delivery of peptide drugs into pilosebaceous units: an in vivo study using the hamster ear model. Pharm Res 12(8):1184–1188

    Article  CAS  PubMed  Google Scholar 

  • Ntimenou V, Fahr A, Antimisiaris SG (2012) Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types. J Biomed Nanotechnol 8(4):613–623

    Article  CAS  PubMed  Google Scholar 

  • Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC (2012) Introduction to confocal microscopy. J Invest Dermatol 132(12), e3. doi:10.1038/jid.2012.429

    Article  CAS  PubMed  Google Scholar 

  • Patzelt A, Richter H, Knorr F, Schäfer U, Lehr C-M, Dähne L et al (2011) Selective follicular targeting by modification of the particle sizes. J Control Release 150(1):45–48. doi:http://dx.doi.org/10.1016/j.jconrel.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  • Potma EO, de Boeij WP, van Haastert PJM, Wiersma DA (2001) Real-time visualization of intracellular hydrodynamics in single living cells. Proc Natl Acad Sci 98(4):1577–1582. doi:10.1073/pnas.98.4.1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman C, Krishnan K (1928) A new type of secondary radiation. Nature 121(3048):501–502. doi:10.1038/121501c0

    Article  CAS  Google Scholar 

  • Saar BG, Contreras-Rojas LR, Xie XS, Guy RH (2011) Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol Pharm 8(3):969–975. doi:10.1021/mp200122w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzlein A, Cevc G (1998) Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br J Dermatol 138(4):583–592

    Article  CAS  PubMed  Google Scholar 

  • Schenke-Layland K, Riemann I, Damour O, Stock UA, Konig K (2006) Two-photon microscopes and in vivo multiphoton tomographs--powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev 58(7):878–896. doi:10.1016/j.addr.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  • Schnetz E, Fartasch M (2001) Microdialysis for the evaluation of penetration through the human skin barrier - a promising tool for future research? Eur J Pharm Sci 12(3):165–174

    Article  CAS  PubMed  Google Scholar 

  • Scholten T, Scholten TAHM (1989) Coherent Anti-stokes Raman Scattering (CARS): technique and application to biophysical studies; the potentials of CARS microscopy

    Google Scholar 

  • Scholten TA, Lucassen GW, De Mul FF, Greve J (1989) Nonresonant background suppression in CARS spectra of dispersive media using phase mismatching. Appl Opt 28(7):1387–1400. doi:10.1364/ao.28.001387

    Article  CAS  PubMed  Google Scholar 

  • Schreiner V, Gooris GS, Pfeiffer S, Lanzendorfer G, Wenck H, Diembeck W et al (2000) Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J Invest Dermatol 114(4):654–660. doi:10.1046/j.1523-1747.2000.00941.x

    Article  CAS  PubMed  Google Scholar 

  • Semwogerere D, Weeks ER (2008) Confocal microscopy. In: Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare, New York, pp 705–714

    Google Scholar 

  • Simonetti O, Hoogstraate AJ, Bialik W, Kempenaar JA, Schrijvers AH, Bodde HE et al (1995) Visualization of diffusion pathways across the stratum corneum of native and in-vitro-reconstructed epidermis by confocal laser scanning microscopy. Arch Dermatol Res 287(5):465–473

    Article  CAS  PubMed  Google Scholar 

  • Tenjarla SN, Kasina R, Puranajoti P, Omar MS, Harris WT (1999) Synthesis and evaluation of N-acetylprolinate esters – novel skin penetration enhancers. Int J Pharm 192(2):147–158

    Article  CAS  PubMed  Google Scholar 

  • Tfayli A, Piot O, Pitre F, Manfait M (2007) Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. Eur Biophys J 36(8):1049–1058. doi:10.1007/s00249-007-0191-x

    Article  CAS  PubMed  Google Scholar 

  • Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F (2001) Intracellular delivery mediated by an ethosomal carrier. Biomaterials 22(22):3053–3059

    Article  CAS  PubMed  Google Scholar 

  • Turner NG, Guy RH (1998) Visualization and quantitation of iontophoretic pathways using confocal microscopy. J Investig Dermatol Symp Proc 3(2):136–142

    Article  CAS  PubMed  Google Scholar 

  • van den Bergh BA, Vroom J, Gerritsen H, Junginger HE, Bouwstra JA (1999) Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Acta 1461(1):155–173

    Article  PubMed  Google Scholar 

  • van Kuijk-Meuwissen ME, Junginger HE, Bouwstra JA (1998a) Interactions between liposomes and human skin in vitro, a confocal laser scanning microscopy study. Biochim Biophys Acta 1371(1):31–39

    Article  PubMed  Google Scholar 

  • van Kuijk-Meuwissen ME, Mougin L, Junginger HE, Bouwstra JA (1998b) Application of vesicles to rat skin in vivo: a confocal laser scanning microscopy study. J Control Release 56(1–3):189–196

    Article  PubMed  Google Scholar 

  • Vardaxis NJ, Brans TA, Boon ME, Kreis RW, Marres LM (1997) Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies. J Anat 190(Pt 4):601–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Veiro JA, Cummins PG (1994) Imaging of skin epidermis from various origins using confocal laser scanning microscopy. Dermatology 189(1):16–22

    Article  CAS  PubMed  Google Scholar 

  • Verma D (2002) Thesis title: invasomes – novel vesicular carriers for enhanced topical delivery: characterization and skin penetration properties. Philipps-Universität Marburg, Marburg

    Google Scholar 

  • Verma DD, Fahr A (2004) Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. J Control Release 97(1):55–66. doi:10.1016/j.jconrel.2004.02.028

    Article  CAS  PubMed  Google Scholar 

  • Verma DD, Verma S, Blume G, Fahr A (2003a) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258(1–2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Verma DD, Verma S, Blume G, Fahr A (2003b) Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm 55(3):271–277

    Article  CAS  PubMed  Google Scholar 

  • Verma DD, Verma S, McElwee KJ, Freyschmidt-Paul P, Hoffmann R, Fahr A (2004) Treatment of alopecia areata in the DEBR model using cyclosporin A lipid vesicles. Euro J Dermatol 14(5):1–7

    Google Scholar 

  • Wang HW, Le TT, Cheng JX (2008) Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Commun 281(7):1813–1822. doi:10.1016/j.optcom.2007.07.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wascotte V, Caspers P, de Sterke J, Jadoul M, Guy RH, Preat V (2007) Assessment of the “skin reservoir” of urea by confocal Raman microspectroscopy and reverse iontophoresis in vivo. Pharm Res 24(10):1897–1901. doi:10.1007/s11095-007-9314-4

    Article  CAS  PubMed  Google Scholar 

  • Winter ME (1999) N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc SPIE. 266–75. doi:10.1117/12.366289.

  • Xiao C, Moore DJ, Rerek ME, Flach CR, Mendelsohn R (2005) Feasibility of tracking phospholipid permeation into skin using infrared and Raman microscopic imaging. J Invest Dermatol 124(3):622–632. doi:10.1111/j.0022-202X.2004.23608.x

    Article  CAS  PubMed  Google Scholar 

  • Yarosh D, Bucana C, Cox P, Alas L, Kibitel J, Kripke M (1994) Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol 103(4):461–468

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Kim KH, So PT, Blankschtein D, Langer R (2003) Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. J Invest Dermatol 120(3):448–455. doi:10.1046/j.1523-1747.2003.12061.x

    Article  CAS  PubMed  Google Scholar 

  • Zellmer S, Reissig D, Lasch J (1998) Reconstructed human skin as model for liposome-skin interaction. J Control Release 55(2–3):271–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Moore DJ, Sloan KB, Flach CR, Mendelsohn R (2007) Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy. J Invest Dermatol 127(5):1205–1209. doi:10.1038/sj.jid.5700690

    Article  CAS  PubMed  Google Scholar 

  • Zimmerley M, Lin C-Y, Oertel DC, Marsh JM, Ward JL, Potma EO (2009) Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy. J Biomed Opt 14(4):044019. doi:10.1117/1.3184444

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge Prof. Dr. Benjamin Dietzek and Prof. Dr. Jürgen Popp from Institut für Photonische Technologien, Jena, Germany, for their cooperation in acquiring multimodal CARS images on the human skin cross-sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Fahr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashtikar, M.A., Verma, D.D., Fahr, A. (2017). Confocal Microscopy for Visualization of Skin Penetration. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53270-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53270-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53268-3

  • Online ISBN: 978-3-662-53270-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics