Skip to main content

Solids

  • Chapter
  • First Online:
Book cover Equilibrium Thermodynamics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2329 Accesses

Abstract

A solid substance is characterized by having a spatial structure consisting of a three-dimensional lattice at whose vertices the atoms are located. Because the atoms are in continuous motion due to thermal agitation, the vertices of the lattice are defined, more properly, as the equilibrium positions around which the atoms vibrate. This structure gives to the solid the rigidity that opposes not only the compression and stretch but also shear. In other words, offering resistance to the volume and shape changes. The spatial structures can be ordered as those of the crystalline solid or disordered such as those of the amorphous solids and glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, 1994)

    Google Scholar 

General

  1. H.B. Callen, Thermodynamics (Wiley, New York, 1960); Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)

    MATH  Google Scholar 

  2. S. Carnot, Réflexions sur la Puissance Motrice du Feu et sur les Machines propes à Developper cette Puissance (Bachelier, Paris, 1824)

    MATH  Google Scholar 

  3. É. Clapeyron, Mémoire sur la puissance motrice de la chaleur. J. de l’Ecole Royale Polytechnique 14, 153 (1834)

    Google Scholar 

  4. R. Clausius, Über die bewegende Kraft der Wärme und die Gesetze welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. der Phys. und Chem. 79, 368, 500 (1850)

    Google Scholar 

  5. R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie”. Ann. der Phys. und Chem. 125, 353 (1865)

    Article  ADS  Google Scholar 

  6. P. Duhem, Thermodynamique et Chimie (Hermann, Paris, 1902); 2de édition (1910)

    Google Scholar 

  7. P. Duhem, Traité d’Énergétique ou de Thermodynamique Générale, 2 vols. (Gauthier-Villars, Paris, 1911)

    MATH  Google Scholar 

  8. P.S. Epstein, Textbook of Thermodynamics (Wiley, New York, 1937)

    Google Scholar 

  9. E. Fermi, Thermodynamics (Prentice Hall, New York, 1937); (Dover, New York, 1956)

    Google Scholar 

  10. J.W. Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Connecticut Acad. 2, 382 (1873)

    MATH  Google Scholar 

  11. J.W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. 3, 108 (1876); 3, 343 (1878)

    Google Scholar 

  12. E.A. Guggenheim, Thermodynamics (North Holland, Amsterdam, 1949); 2nd edn. (1950); 3rd edn. (1957); 4th edn. (1959); 5th edn. (1967); 6th edn. (1977); 7th edn. (1985)

    Google Scholar 

  13. J.P. Joule, On the calorific effects of magneto-electricity, and on the mechanical value of heat. Philos. Mag. 23, 263, 347, 435 (1843)

    Google Scholar 

  14. J.P. Joule, On the mechanical equivalent of heat. Philos. Trans. R. Soc. 140, 61 (1850)

    Article  Google Scholar 

  15. C. Kittel, Thermal Physics (Wiley, New York, 1969)

    Google Scholar 

  16. D. Kondepudi, I. Prigogine, Modern Thermodynamics (Wiley, New York, 1998)

    MATH  Google Scholar 

  17. R. Kubo, Thermodynamics (North-Holland, Amsterdam, 1966)

    Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Statistical Physics (Clarendon Press, Oxford, 1938); (Pergamon, Oxford, 1958); 2nd edn. (1969)

    Google Scholar 

  19. J.C. Maxwell, Theory of Heat (Longmans, London, 1871); 5th edn. (1877); 9th edn. (1888)

    Google Scholar 

  20. J.R. Mayer, Bemerkungen über die Kräfte der unbelebten Natur. Ann. der Chem. und Pharm. 42, 233 (1842)

    Article  Google Scholar 

  21. W. Nernst, Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Kgl. Ges. d. Wiss. Gött. 1906, 1–40 (1906)

    MATH  Google Scholar 

  22. W. Nernst, Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes (Knapp, Halle, 1918); 2te Auflage (1924)

    Google Scholar 

  23. A.B. Pippard, The Elements of Classical Thermodynamics (Cambridge University Press, London, 1957)

    MATH  Google Scholar 

  24. M. Planck, Vorlesungen über Thermodynamik (Veit, Leipzig, 1897); 2te Auflage (1905); 3te Auflage (1911); Walter de Gruyter, Berlin, 7te Auflage (1922); 9te Auflage (1930)

    Google Scholar 

  25. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965)

    Google Scholar 

  26. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, 1978)

    MATH  Google Scholar 

  27. Yu.B. Rumer, M.Sh. Ryvkin, Thermodynamics, Statistical Physics, and Kinetics (Mir, Moscow, 1980)

    Google Scholar 

  28. F.W. Sears, Thermodynamics, the Kinetic Theory of Gases, and Statistical Mechanics (Addison Wesley, Reading, 1950); 2nd edn. (1953); F.W. Sears, G.L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd edn. (Addison-Wesley, Reading, 1975)

    Google Scholar 

  29. A. Sommerfeld, Thermodynamik und Statistik (Dieterich’sche Verlagsbuchhandlung, Wiesbaden, 1952)

    MATH  Google Scholar 

  30. R.E. Sonntag, G.J. Van Wylen, Introduction to Thermodynamics: Classical and Statistical (Wiley, New York, 1971)

    Google Scholar 

  31. W. Thomson (Lord Kelvin), On an absolute thermodynamic scale, founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Philos. Mag. 33, 313 (1848)

    Google Scholar 

  32. W. Thomson (Lord Kelvin), On the dynamical theory of heat, with numerical results from Mr. Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Philos. Mag. 4, 8, 105, 168 (1852)

    Google Scholar 

  33. L. Tisza, Generalized Thermodynamics (MIT Press, Cambridge, 1966)

    MATH  Google Scholar 

  34. J.D. van der Waals, Over de Continuiteit van den Gas- en Vloeistoftoestand (Sijthoff, Leiden, 1873)

    Google Scholar 

  35. H.L.F. von Helmholtz, Über die Erhaltung der Kraft (Reimer, Berlin, 1847)

    MATH  Google Scholar 

  36. M.W. Zemansky, Heat and Thermodynamics (McGraw-Hill, New York, 1937); 2nd edn. (1943); 3rd edn. (1951); 4th edn. (1957); 5th edn. (1968); M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics, An Intermediate Textbook, 6th edn. (McGraw-Hill, New York, 1981); 7th edn. (1996)

    Google Scholar 

Liquids, Mixtures and Thermochemistry

  1. P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1978); 2nd edn. (1982); 3rd edn. (1986); 4th edn. (1990); 5th edn. (1994); 6th edn. (1998)

    Google Scholar 

  2. T. De Donder, L’Affinité (Lamertin, Bruxelles, 1923)

    MATH  Google Scholar 

  3. A. Findlay, The Phase Rule and its Application (Longmans, London, 1904); 5th edn. (1923); 9th edn. (Dover, New York, 1951)

    Google Scholar 

  4. E.A. Guggenheim, Mixtures (Clarendon Press, Oxford, 1952)

    MATH  Google Scholar 

  5. W. Heitler, Zwei Beiträge zur Theorie konzentrierter Lösungen. Ann. Physik 80, 629 (1926)

    Article  ADS  MATH  Google Scholar 

  6. J.H. Hildebrand, Solubility. XII. Regular solutions. J. Am. Chem. Soc. 51, 66 (1929)

    Article  Google Scholar 

  7. J.H. Hildebrand, Solubility of Nonelectrolytes, 2nd edn. (Reinhold, New York, 1936); J.H. Hildebrand, R.L. Scott, Solubility of Nonelectrolytes, 3rd edn. (Reinhold, New York, 1950)

    Google Scholar 

  8. J.G. Kirkwood, I. Oppenheim, Chemical Thermodynamics (McGraw-Hill, New York, 1961)

    Google Scholar 

  9. A.N. Krestóvnikov, V.N. Vigdoróvich, Termodinámica Química (Editorial Mir, Moscú, 1980)

    Google Scholar 

  10. G.N. Lewis, M. Randall, Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill, New York, 1923); 2nd edn., 1961, revised by K.S. Pitzer and L. Brewer

    Google Scholar 

  11. W.J. Moore, Physical Chemistry (Prentice-Hall, New York, 1950); 2nd edn. (1955); 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1962); 4th edn. (1972)

    Google Scholar 

  12. L.K. Nash, Elements of Chemical Thermodynamics (Addison-Wesley, Reading, 1962)

    Google Scholar 

  13. I. Prigogine, R. Defay, Thermodynamique chimique (Dunot, Paris, 1944); (Desoer, Liège, 1950)

    Google Scholar 

  14. J.S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1959); J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures, 3rd edn. (Butterworth Scientific, London, 1982)

    Google Scholar 

  15. J. Waser, Basic Chemical Thermodynamics (Benjamin, New York, 1966)

    Google Scholar 

  16. E.N. Yeremin, Fundamentals of Chemical Thermodynamics (Mir, Moscow, 1981)

    Google Scholar 

Solids and Alloys

  1. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  2. W.L. Bragg, E.J. Williams, The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. A 145, 699 (1934)

    Article  ADS  Google Scholar 

  3. A.D. Bruce, R.A. Cowley, Structural Phase Transitions (Taylor and Francis, London, 1981)

    Google Scholar 

  4. P. Gordon, Principles of Phase Diagrams in Materials Systems (McGraw-Hill, New York, 1968)

    Google Scholar 

  5. W. Gorsky, Röntgenographische Untersuchung von Umwandlungen in der CuAu. Z. Physik 50, 64 (1928)

    Article  ADS  Google Scholar 

  6. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953); 4th edn. (1971); 7th edn. (1996)

    Google Scholar 

  7. M.A. Krivoglaz, A.A. Smirnov, The Theory of Order-Disorder in Alloys (Elsevier, New York, 1965)

    Google Scholar 

  8. R. Kubo, T. Nagamiya, Solid State Physics (MacGraw-Hill, New York, 1969)

    Google Scholar 

  9. L.D. Landau, Zh. Éksp. Teor. Fiz. 7 19, 627 (1937)

    Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1959); 2nd edn. (1970)

    Google Scholar 

  11. T. Muto, Y. Takagi, The theory of order-disorder transitions in alloys. Solid State 1, 193 (1955)

    Google Scholar 

  12. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Google Scholar 

Magnetic and Ferromagnetic Materials

  1. M.F. Collins, Magnetic Critical Scattering (Oxford University Press, New York, 1989)

    Google Scholar 

  2. P. Curie, Propriétés magnétiques des corps a diverses températures. Ann. de Chim. et de Phys. 5, 289 (1895)

    Google Scholar 

  3. L.J. de Jongh, A.R. Miedema, Experiments on simple magnetic model systems. Adv. Phys. 23, 1 (1974)

    Article  ADS  Google Scholar 

  4. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1991)

    Book  Google Scholar 

  5. L. Landau, Eine mögliche erklärung der feldabhängigkeit der suszeptibilität bei niedrigen temperaturen. Phys. Z. Sowjetunion 4, 675 (1933)

    MATH  Google Scholar 

  6. R.A. McCurrie, Ferromagnetic Materials (Academic, London, 1994)

    Google Scholar 

  7. L. Néel, Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 3, 137 (1948)

    Google Scholar 

  8. J.S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966)

    Google Scholar 

  9. J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, London, 1932)

    MATH  Google Scholar 

  10. P. Weiss, L’hypothèse du champ moléculaire et la propriété ferromagétique. J. Phys. 6, 661 (1907)

    MATH  Google Scholar 

  11. P. Weiss, G. Foëx, Le Magnétisme (Librairie Armand Colin, Paris, 1926)

    MATH  Google Scholar 

Dielectrics and Ferroelectrics

  1. J.C. Burfoot, Ferroelectrics (D. van Nostrand, London, 1967)

    Google Scholar 

  2. P. Debye, Einige Resultate einer kinetischen Theorie der Isolatoren. Phys. Z. 13, 97 (1912)

    MATH  Google Scholar 

  3. P. Debye, Polare Molekeln (Hirzel, Leipzig, 1929)

    MATH  Google Scholar 

  4. A.F. Devonshire, Theory of barium titanate. Part I. Philos. Mag. 40, 1040 (1949); Theory of barium titanate. Part II. Philos. Mag. 42, 1065 (1951)

    Google Scholar 

  5. E. Fatuzzo, W.J. Merz, Ferroeletricity (North-Holland, Amsterdam, 1967)

    Google Scholar 

  6. W. Känzig, Ferroelectrics and Antiferroelectrics (Academic, New York, 1957)

    Google Scholar 

  7. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  8. J.C. Slater, Theory of the transition in KH2PO4. J. Chem. Phys. 9, 16–33 (1941)

    Article  ADS  Google Scholar 

Liquid Crystals

  1. P.J. Collings, Liquid Crystals (Princeton University Press, Princeton, 1990)

    Google Scholar 

  2. P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974); P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  3. A.M. Figueiredo Neto, S.R.A. Salinas, The Physics of Lyotropic Liquid Crystals (Oxford University Press, Oxford, 2005)

    Book  Google Scholar 

  4. E.B. Priestley, P.J. Wojtowicz, P. Sheng (eds.), Introduction to Liquid Crystals (Plenum, New York, 1974)

    Google Scholar 

Thermal Radiation

  1. M. Planck, Ueber eine Verbesserung der Wien’schen Spectralgleichung. Verh. Dtsch. Phys. Ges. 2, 202 (1900)

    MATH  Google Scholar 

  2. M. Planck, Vorlesungen über Theorie der Wärmestrahlung (Barth, Leipzig, 1906); 2te auflage (1913)

    MATH  Google Scholar 

Phase Transitions and Critical Phenomena

  1. C. Domb, The Critical Point (Taylor and Francis, London, 1996)

    Google Scholar 

  2. M.E. Fisher, The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  3. R.B. Griffiths, Thermodynamic functions for fluids and ferromagnets near the critical point. Phys. Rev. 158, 176 (1967)

    Article  ADS  Google Scholar 

  4. R.B. Griffiths, Thermodynamic model for tricritical points in ternary and quaternary fluid mixtures. J. Chem. Phys. 60, 195 (1974)

    Article  ADS  Google Scholar 

  5. R.B. Griffiths, Phase diagrams and higher-order critical points. Phys. Rev. B 12, 345 (1975)

    Article  ADS  Google Scholar 

  6. R.B. Griffiths, J.C. Wheeler, Critical points in multicomponent systems. Phys. Rev. A 2, 1047 (1970)

    Article  ADS  Google Scholar 

  7. R.B. Griffiths, J.C. Wheeler, The Thermodynamics of Phase Transitions (1976)

    Google Scholar 

  8. P. Heller, Experimental investigations of critical phenomena. Rep. Prog. Phys. 30, 731 (1967)

    Article  ADS  Google Scholar 

  9. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971)

    Google Scholar 

  10. J.-C. Tolédano, P. Tolédano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)

    Book  MATH  Google Scholar 

  11. B. Widom, Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43, 3898 (1965)

    Article  ADS  Google Scholar 

  12. J. Zernike, General considerations concerning the number of virtual phases. Rec. Trav. Chim. 68, 585 (1949)

    Article  Google Scholar 

Collectanea

  1. J. Kestin (ed.), The Second Law (Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, 1976)

    Google Scholar 

  2. R.B. Lindsay (ed.), Energy: Historical Development of the Concept (Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, 1975)

    Google Scholar 

  3. W.F. Magie, A Source Book in Physics (McGraw-Hill, New York, 1935)

    Google Scholar 

Chapter 5

  1. A. Michels, W. de Graaff, T. Wassenaar, J.M.H. Levelt, P. Louwerse, Physica 25, 25 (1959)

    Article  ADS  Google Scholar 

  2. J.R. Roebuck, H. Osterberg, Phys. Rev. 48, 450 (1935)

    Article  ADS  Google Scholar 

Chapter 6

  1. K. Clusius, L. Riccoboni, Z. Phys. Chem. B 38, 81 (1937)

    Google Scholar 

  2. W.S. Corak, M.P. Garfunkel, C.B. Satterthwaite, A. Wexler, Phys. Rev. 98, 1699 (1955)

    Article  ADS  Google Scholar 

  3. P. Debye, Ann. Phys. 39, 789 (1912)

    Article  Google Scholar 

  4. E.D. Eastman, W.C. McGavock, J. Am. Chem. Soc. 59, 145 (1937)

    Article  Google Scholar 

  5. A. Einstein, Ann. Phys. 22, 180 (1907)

    Google Scholar 

  6. W.F. Giauque, J.O. Clayton, J. Am. Chem. Soc. 55, 4875 (1933)

    Article  Google Scholar 

  7. W.F. Giauque, J.W. Stout, J. Am. Chem. Soc. 58, 1144 (1936)

    Article  ADS  Google Scholar 

  8. P.H. Keesom, N. Pearlman, Phys. Rev. 91, 1354 (1953)

    Article  ADS  Google Scholar 

  9. J.F. Nagle, J. Math. Phys. 7, 1484 (1966)

    Article  ADS  Google Scholar 

  10. W. Nernst, Kgl. Ges. d. Wiss. Gött. 1906, 1–40 (1906)

    Google Scholar 

  11. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935)

    Article  Google Scholar 

  12. M. Planck, Vorlesungen über Thermodynamik (Veit, Leipzig, 1911); 3te Auflage, p. 266

    Google Scholar 

  13. O. Sackur, Ann. Phys. 36, 958 (1911)

    Article  Google Scholar 

  14. A. Sommerfeld, Z. Phys. 47, 1 (1928)

    Article  ADS  Google Scholar 

  15. H. Tetrode, Ann. Phys. 38, 434 (1912)

    Article  Google Scholar 

  16. G.K. White, J.G. Collins, J. Low Temp. Phys. 7, 43 (1972)

    Article  ADS  Google Scholar 

Chapter 8

  1. L. Beck, G. Ernst, J. Gürtner, J. Chem. Thermodyn. 34, 277 (2002)

    Article  Google Scholar 

  2. Table 8.2 R.D. Goodwin, L.A. Weber, J. Res. NBS A 73, 1 (1969); M. Barmatz, Phys. Rev. Lett. 24, 651 (1970); H.D. Bale, B.C. Dobbs, J.S. Lin, P.W. Schmidt, Phys. Rev. Lett. 25, 1556 (1970); L.A. Weber, Phys. Rev. A 2, 2379 (1970); G.R. Brown, H. Meyer, Phys. Rev. A 6, 364 (1972); A. Tominaga, Y. Narahara, Phys. Lett. A 41, 353 (1972); C.E. Chase, G.O. Zimmerman, J. Low Temp. Phys. 11, 551 (1973); H.A. Kierstead, Phys. Rev. A 7, 242 (1973); A.V. Voronel, V.G. Gorbunova, V.A. Smirnov, N.G. Shmakov, V.V. Shchekochikhina, Sov. Phys. JETP 36, 505 (1973); J.M.H. Levelt-Sengers, Physica 73, 73 (1974); M. Barmatz, P.C. Hohenberg, A. Kornblit, Phys. Rev. B 12, 1947 (1975); R. Hocken, M.R. Moldover, Phys. Rev. Lett. 37, 29 (1976); A.V. Voronel, in Phase Transitions and Critical Phenomena, vol. 5b, p. 343, ed. by C. Domb, M.S. Green (Academic, New York, 1976); D.R. Douslin, R.H. Harrison, J. Chem. Thermodyn. 8, 301 (1976); D. Balzarini, M. Burton, Can. J. Phys. 57, 1516 (1979); M.W. Pestak, M.H.W. Chan, Phys. Rev. B 30, 274 (1984); J.R. de Bruyn, D.A. Balzarini, Phys. Rev. A 36, 5677 (1987); J.R. de Bruyn, D.A. Balzarini, Phys. Rev. B 39, 9243 (1989); L. Beck, G. Ernst, J. Gürtner, J. Chem. Thermodyn. 34, 277 (2002)

    Google Scholar 

  3. R.B. Griffiths, Phys. Rev. 158, 176 (1967)

    Article  ADS  Google Scholar 

  4. A. Michels, B. Blaisse, C. Michels, Proc. R. Soc. A 160, 358 (1937)

    Article  ADS  Google Scholar 

  5. A.V. Voronel, V.G. Gorbunova, V.A. Smirnov, N.G. Shmakov, V.V. Shchekochikhina, Sov. Phys. JETP 36, 505 (1973)

    ADS  Google Scholar 

Chapter 10

  1. A.S. Darling, R.A. Mintern, J.C. Chaston, J. Inst. Met. 81, 125 (1952–1953)

    Google Scholar 

  2. B.F. Dodge, A.K. Dunbar, J. Am. Chem. Soc. 49, 591 (1927)

    Article  Google Scholar 

  3. J.L. Murray, Metall. Trans. A 15, 261 (1984)

    Article  Google Scholar 

  4. H. Stöhr, W. Klemm, Z. Anorg. Allgem. Chem. 241, 305 (1939)

    Article  Google Scholar 

  5. Table 10.1 D.R. Thompson, O.K. Rice. J. Am. Chem. Soc. 86, 3547 (1964); B. Chu, F.J. Schoenes, W.P. Kao, J. Am. Chem. Soc. 90, 3042 (1968); A.M. Wims, D. McIntyre, F. Hynne, J. Chem. Phys. 50, 616 (1969); P.N. Pusey, W.I. Goldburg, Phys. Rev. A 3, 766 (1971); H.K. Schurmann, R.D. Parks, Phys. Rev. Lett. 26, 367 (1971); D. Balzarini, Can. J. Phys. 52, 499 (1974); E.S.R. Gopal et al., Phys. Rev. Lett. 32, 284 (1974); S.C. Greer, R. Hocken, J. Chem. Phys. 63, 5067 (1975); J.I. Lataille, T.S. Venkataraman, L.M. Narducci, Phys. Lett. A 53, 359 (1975); S.C. Greer, Phys. Rev. A 14, 1770 (1976); D.T. Jacobs, et al., Chem. Phys. 20, 219 (1977); D. Beysens, A. Bourgon, Phys. Rev. A 19, 2407 (1979); M.A. Anisimov et al., Sov. Phys. JETP 49, 844 (1979); D. Beysens, J. Chem. Phys. 71, 2557 (1979); A. Sivaraman et al., Ber. Bunsen Phys. Chem. 84, 196 (1980); J. Shelton, D. Balzarini, Can. J. Phys. 59, 934 (1981); M. Nakata, T. Dobashi, N. Kuwahara, M. Kaneko, B. Chu, Phys. Rev. A 18, 2683 (1987)

    Google Scholar 

Chapter 12

  1. W.L. Bragg, E.J. Williams, Proc. R. Soc. A 145, 699 (1934)

    Article  ADS  Google Scholar 

  2. Table 12.1 O.W. Dietrich, J. Als-Nielsen, Phys. Rev. 153, 711 (1967); J. Als-Nielsen, O.W. Dietrich, Phys. Rev. 153, 717 (1967); J. Ashman, P. Handler, Phys. Rev. Lett. 23, 642 (1969); M.B. Salamon, F.L. Lederman, Phys. Rev. B 10, 4492 (1974); M.F. Collins, Magnetic Critical Scattering (Oxford University Press, Oxford, 1989)

    Google Scholar 

  3. C. Franz, M. Gantois, J. Appl. Crystallogr. 4, 387 (1971)

    Article  Google Scholar 

  4. W. Gorsky, Z. Phys. 50, 64 (1928)

    Article  ADS  Google Scholar 

  5. L.D. Landau, Zh. Éksp. Teor. Fiz. 7 19, 627 (1937)

    Google Scholar 

  6. W. Shockley, J. Chem. Phys. 6, 130 (1938)

    Article  ADS  Google Scholar 

  7. Figure 12.2 C. Sykes, H. Wilkinson, J. Inst. Met. 61, 223 (1937); O. Rathmann, J. Als-Nielsen, Phys. Rev. B 9, 3921 (1974); P.K. Kumar, L. Muldawer, Phys. Rev. B 14, 1972 (1976); M. Hansen, Constitution of Binary Alloys, 2nd edn. (McGraw-Hill, New York, 1958)

    Google Scholar 

Chapter 13

  1. L. Brillouin, J. Phys. 8, 74 (1927)

    Google Scholar 

  2. D.L. Connelly, J.S. Loomis, D.E. Mapother, Phys. Rev. B 3, 924 (1971)

    Article  ADS  Google Scholar 

  3. P. Curie, Ann. Chim. Phys. 5, 289 (1895)

    Google Scholar 

  4. Table 13.3 P. Heller, Rep. Prog. Phys. 30, 731 (1967); W. Rocker, R. Kohlhass, Z. Naturforsch. A 22, 291(1967); J.S. Kouvel, J.B. Comly, J. Appl. Phys. 20, 1237 (1968); J.T. Ho, J.D. Litster, Phys. Rev. B 2, 4523 (1970); Phys. Rev. Lett. 22, 603 (1969); N. Menyuk, K. Dwight, T.B. Reed, Phys. Rev. B 3, 1689 (1971); G. Ahlers, A. Kornblit, Phys. Rev. B 12, 1938 (1975); A. Kornblit, G. Ahlers, E. Buehler, Phys. Rev. B 17, 282 (1978); C.J. Glinka, V.J. Minikiewicz, PRB 16, 4084 (1977); M.F. Collins, Magnetic Critical Scattering (Oxford University Press, New York, 1989); T. Tanaka, K. Miyatani, J. Appl. Phys. 82, 5658 (1997)

    Google Scholar 

  5. W.E. Henry, Phys. Rev. 88, 559 (1952)

    Article  ADS  Google Scholar 

  6. P. Langevin, Ann. Chim. Phys. 5, 70 (1905); J. Phys. 4, 678 (1905)

    Google Scholar 

  7. P. Weiss, J. Phys. 6, 661 (1907)

    Google Scholar 

  8. P. Weiss, R. Forrer, Ann. Phys. 5, 153 (1926)

    Google Scholar 

Chapter 14

  1. M.E. Fisher, Physica 26, 618 (1960); Philos. Mag. 7, 1731 (1962)

    Google Scholar 

  2. Table 14.2 A. Kornblit, G. Ahlers, Phys. Rev. B 8, 5163 (1973); L.J. de Jongh, A.R. Miedema, Adv. Phys. 23, 1 (1974); G. Ahlers, A. Kornblit, Phys. Rev. B 12, 1938 (1975); M. Barmatz, P.C. Hohenberg, A.Kornblit, Phys. Rev. B 12, 1947 (1975); M.F. Collins, Magnetic Critical Scattering (Oxford University Press, New York, 1989)

    Google Scholar 

  3. L. Landau, Phys. Z. Sowjetunion 4, 675 (1933)

    Google Scholar 

  4. D.P. Landau, B.E. Keen, B. Schneider, W.P. Wolf, Phys. Rev. B 3, 2310 (1970)

    Article  ADS  Google Scholar 

  5. M.A. Lasher, J. van den Broek, C.J. Gorter, Physica 24, 1061, 1076 (1958)

    ADS  Google Scholar 

  6. L. Néel, Ann. Phys. 3, 137 (1948)

    Google Scholar 

  7. N.F. Oliveira Jr., A.P. Filho, S.R.A. Salinas, in AIP Conference Proceedings, vol. 29 (1975), p. 463

    Google Scholar 

  8. R. Pauthenet, Ann. Phys. 3, 424 (1958)

    Article  Google Scholar 

Chapter 15

  1. R. Blinc, J. Phys. Chem. Solids 13, 204 (1960)

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, Solid State Commun. 1, 132 (1963)

    Article  ADS  Google Scholar 

  3. P. Debye, Phys. Z. 13, 97 (1912)

    Google Scholar 

  4. A.F. Devonshire, Philos. Mag. 40, 1040 (1949); Philos. Mag. 42, 1065 (1951)

    Google Scholar 

  5. S. Hoshino, T. Mitsui, F. Jona, R. Pepinsky, Phys. Rev. 107, 1255 (1957)

    Article  ADS  Google Scholar 

  6. Y. Ishibashi, J. Phys. Soc. Jpn. 56, 2089 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. W.J. Merz, Phys. Rev. 91, 513 (1953)

    Article  ADS  Google Scholar 

  8. R. Sänger, O. Steiger, Gächter, Helv. Phys. Acta 5, 200 (1932)

    Google Scholar 

  9. J.C. Slater, J. Chem. Phys. 9, 16–33 (1941)

    Google Scholar 

  10. Y. Takagi, J. Phys. Soc. Jpn. 3, 271, 273 (1948)

    Article  ADS  Google Scholar 

  11. C.T. Zahn, Phys. Rev. 24, 400 (1924); Phys. Rev. 27, 455 (1926); C.T. Zahn, J.B. Miles, Jr., Phys. Rev. 32, 497 (1928)

    Article  ADS  Google Scholar 

Chapter 16

  1. A.D. Bruce, R.A. Cowley, Structural Phase Transitions (Taylor and Francis, London, 1981)

    Google Scholar 

  2. A.F. Devonshire, Philos. Mag. 40, 1040 (1949); Philos. Mag. 40, 1065 (1949)

    Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1959); 2nd edn. (1970)

    Google Scholar 

  4. P. Toledano, M.M. Fejer, B.A. Auld, Phys. Rev. B 27, 5717 (1983)

    Article  ADS  Google Scholar 

Chapter 17

  1. P.J. Collings, Liquid Crystals (Princeton University Press, Princeton, 1990)

    Google Scholar 

  2. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  3. I. Lelides, G. Durand, Phys. Rev. Lett. 73, 672 (1994)

    Article  ADS  Google Scholar 

Chapter 18

  1. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, Astrophys. J. 473, 576 (1996)

    Article  ADS  Google Scholar 

  2. M.F. Modest, Radiate Heat Transfer (McGraw-Hill, New York, 1992); 2nd edn. (Academic, Amsterdam, 2003)

    Google Scholar 

  3. M. Planck, Verh. Dtsch. Phys. Ges. 2, 202 (1900)

    Google Scholar 

Chapter 19

  1. J. Heer, The principle of Le Chatelier and Braun. J. Chem. Educ. 34 (8), 375–380 (1957)

    Article  Google Scholar 

  2. L.K. Nash, Elements of Chemical Thermodynamics (Addison-Wesley, Reading, 1962)

    Google Scholar 

  3. J. Waser, Basic Chemical Thermodynamics (Benjamin, New York, 1966)

    Google Scholar 

Tables e Handbooks

  1. Encyclopedie de Gaz, L’Air Liquide, Division Scientifique (Elsevier, Amsterdam, 1976)

    Google Scholar 

  2. D.E. Gray (coordinating editor), American Institute of Physics Handbook, 3rd edn. (McGraw-Hill, New York, 1972)

    Google Scholar 

  3. J. Hilsenrath (ed.), Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, and Steam (Pergamon, New York, 1960)

    Google Scholar 

  4. Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 6te Auflage (Springer, Berlin, 1950–1980); Neue Series (1961–1985)

    Google Scholar 

  5. D.R. Lide (editor-in-chief), CRC Handbook of Chemistry and Physics, 78th edn. (CRC Press, Boca Raton, FL, 1997–1998)

    Google Scholar 

  6. E.W. Washburn (editor-in-chief), International Critical Tables (McGraw-Hill, New York, 1926–1930)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Oliveira, M.J. (2017). Solids. In: Equilibrium Thermodynamics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53207-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53207-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53205-8

  • Online ISBN: 978-3-662-53207-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics