Skip to main content

The Stable Fixtures Problem with Payments

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Included in the following conference series:

  • 631 Accesses

Abstract

We generalize two well-known game-theoretic models by introducing multiple partners matching games, defined by a graph \(G=(N,E)\), with an integer vertex capacity function b and an edge weighting w. The set N consists of a number of players that are to form a set \(M\subseteq E\) of 2-player coalitions ij with value w(ij), such that each player i is in at most b(i) coalitions. A payoff is a mapping \(p: N \times N \rightarrow {\mathbb R}\) with \(p(i,j)+p(j,i)=w(ij)\) if \(ij\in M\) and \(p(i,j)=p(j,i)=0\) if \(ij\notin M\). The pair (Mp) is called a solution. A pair of players ij with \(ij\in E\setminus M\) blocks a solution (Mp) if ij can form, possibly only after withdrawing from one of their existing 2-player coalitions, a new 2-player coalition in which they are mutually better off. A solution is stable if it has no blocking pairs. We give a polynomial-time algorithm that either finds that no stable solution exists, or obtains a stable solution. Previously this result was only known for multiple partners assignment games, which correspond to the case where G is bipartite (Sotomayor 1992) and for the case where \(b\equiv 1\) (Biro et al. 2012). We also characterize the set of stable solutions of a multiple partners matching game in two different ways and initiate a study on the core of the corresponding cooperative game, where coalitions of any size may be formed.

P. Biró—Supported by the Hungarian Academy of Sciences under Momentum Programme LD-004/2010, by the Hungarian Scientific Research Fund - OTKA (no. K108673), and by János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

D. Paulusma—Supported by EPSRC Grant EP/K025090/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baïou, M., Balinski, M.: Many-to-many matching: stable polyandrous polygamy (or polygamous polyandry). Discrete Appl. Math. 101, 1–12 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)

    MATH  Google Scholar 

  3. Biró, P., Bomhoff, M., Golovach, P.A., Kern, W., Paulusma, D.: Solutions for the stable roommates problem with payments. Theoret. Comput. Sci. 540–541, 53–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biró, P., Kern, W., Paulusma, D.: Computing solutions for matching games. Int. J. Game Theory 41, 75–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem. ACM Trans. Algorithms 1, 143–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chalkiadakis, G., Elkind, E., Markakis, E., Polurkov, M., Jennings, N.R.: Cooperative games with overlapping coalitions. J. Artif. Intell. Res. 39, 179–216 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24, 751–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eriksson, K., Karlander, J.: Stable outcomes of the roommate game with transferable utility. Int. J. Game Theory 29, 555–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method, its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981). [corrigendum: Combinatorica 4, 291–295 (1984)]

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  13. Irving, R.W.: An efficient algorithm for the stable roommates problem. J. Algorithms 6, 577–595 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Irving, R.W., Scott, S.: The stable fixtures problem - a many-to-many extension of stable roommates. Discrete Appl. Math. 155, 2118–2129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kern, W., Paulusma, D.: The new FIFA rules are hard: complexity aspects of sport competitions. Discrete Appl. Math. 108, 317–323 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet Math. Dokl. 20, 191–194 (1979)

    MATH  Google Scholar 

  17. Lawler, E.: Combinatorial Optimization. Courier Dover Publ., New York (1976)

    MATH  Google Scholar 

  18. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Letchford, A.N., Reinelt, G., Theis, D.O.: Odd minimum cut sets and \(b\)-matchings revisited. SIAM J. Discrete Math. 22, 1480–1487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Manlove, D.: Algorithmics of Matching Under Preferences, Series on Theoretical Computer Science, vol. 2. World Scientific (2013)

    Google Scholar 

  21. Megiddo, N.: Combinatorial optimization with rational objective functions. Math. OR 4, 414–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roth, A.E., Sotomayor, M.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  23. Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theory 1, 111–130 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sotomayor, M.: The multiple partners game. In: Equilibrium and Dynamics: Essays in Honor of David Gale. Macmillan Press Ltd, New York (1992)

    Google Scholar 

  25. Tutte, W.T.: A short proof of the factor factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniël Paulusma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biró, P., Kern, W., Paulusma, D., Wojuteczky, P. (2016). The Stable Fixtures Problem with Payments. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics